MIT D-Lab Design Review + Dinner Off-Grid Chick Brooder -- Cameroon

Ahmad Zakka, MIT MSc '23 Josh Maldonado, MIT SB '23 Aly Kombargi, MIT PhD candidate

March 21, 2024

Applications of Energy in Global Development (EC.712 / EC.782)

MITD-Lab designing for a more equitable world

Off-Grid Brooder Obala, Cameroon

Ahmad Zakka, Josh Maldonado, Aly Kombargi

Our Partners

Community Contacts:

Joël Jeanloz (African Solar Generation, formerly Antenna Foundation) Lionel Wassoumi (African Solar Generation) Carole Erlemann Menguei (President CDAS-BC) Kathrin Witschi (Secretary/ Treasurer CDAS-BC)

TABLE OF CONTENTS

O1 BACKGROUND

Poultry Sector In Cameroon

Poultry contributes 4% to Cameroon's GDP

42% of all meat production

320,000 jobs created in recent years

Poultry In Cameroon

Agriculture Sector In Cameroon

Agricultural sector 50% of export earnings

Agricultural sector 17% of the GDP

Employ between 70%-80% of the population

Small scale farming 70% of agriculture sector

Current Poultry Market

Disadvantages:

- Weakened Economy
- Reliance on Foreign Market
- Market dominated by inferior product
- Disappearance of local breeds

Road to Cyclical

- Not a sprint but a marathon
- Small scale/ Low cost egg incubation
- Cost efficient chick brooding

O2 Designing the Brooder Box

Incumbent Solution

Burn firewood to keep chicks warm

- Disadvantages:
 - Pollution → Environmental/health concerns
 - Inconvenient → Farmers must rekindle fire several times a night
 - **Dangerous** \rightarrow Farmers must sleep near chicks
- Advantages:
 - $\circ \quad \textbf{Cheap} \rightarrow \textbf{Firewood easily sourced}$
 - Familiar \rightarrow Farmers are accustomed and experienced in wood burning
 - $\circ \quad \mbox{Reliable} \rightarrow \mbox{No reliance on external} \\ \mbox{factors (grid, solar etc...)}$

Design Requirements

Design Requirement	What is measured?	How is it measured?	Target	Ideal	Reference
Interior Temperature	Temperature in the chamber	Temperature sensors	30-33 °C somewhere	30-33 °C everywhere	ASG
Time Between Maintenance	Time that temperature is in range	Temperature sensors	8 hrs	12 hrs	ASG
Humidity	Average humidity in box	Humidity sensors	40-60%	40-60%	Literature review
Ventilation	Volumetric air flow through box	Anemometer	12 CFM	12 CFM	Literature review
Operator Time	Time to maintain box	User experience, calculations	1hr	30min	Estimate

Building: The Box

Tasks Accomplished

- Recreated the brooder box in Fusion 360 at ¼ volume
- Built the box from ½ in.
 plywood and 1 in. XPS foam board
- 3. Created barriers to mark potential locations to place the PCMs and protect them from the chicks

Building: The Sensors

Tasks Accomplished

- Installed DS18B20 temperature sensors and DHT22 temperature and humidity sensors
- Monitored recorded sensor output using an Arduino Uno
- 3. Strategically placed sensors at measured distances from the PCM and within the PCM to monitor temperatures throughout the box

Building: The Sensors

Building: The Heat Source

- 1. Replaced initial firewood technique
- 2. Thermally-insulated wooden cabinet
- 3. Solar panels that store energy in batteries for heating with lamps

Building: The Heat Source

- 1. Replaced initial firewood technique
- 2. Thermally-insulated wooden cabinet
- 3. Solar panels that store energy in batteries for heating with lamps

- Replaced lamp warming with heat released from phase-changing materials (PCMs)
- 2. Thermally-insulated wooden cabinet
- 3. PCMs : sodium sulfate decahydrate, tetradecanol, paraffin wax

Building: The Heat Source

O3 Designing the Thermal Battery

Design - Thermal Batteries

Design - Thermal Batteries

Sodium sulfate & Tetradecanol Water

Beeswax

Hybrid

04 **Designing the Egg Incubator** Box

Design - Egg Incubator

Controls:

- Temperature
- Humidity
- Rocking motion

The Project Today

New Partners

CDAS-BC (African Diaspora Council of Switzerland – Branch Cameroon)

Kathrin Witschi Secretary/ Treasurer

Carole Erlemann Mengue President/Founder

Interests

- Permaculture & Biological Agriculture
- Cultural Exchanges & Travelling
- Experimenting Small Scale Agro-Business

Interests

- Agriculture
- Professional Exchanges
- Social Reintegration

Data Collected In Research Box

- Styrofoam Insulation
- Stacked Design (floor heating)
- Aluminum Base Tray
- 10 Kg of Beeswax Thermal Batteries

Fully Melted Wax Experiment

Key Takeaways

Chick Space Over	Chick Space Over	Thermal Batteries
30°C	29°C	Over 30°C
7h 48min	12h	+21h

- Inlet vent temperature > Chick height Temperature indicate heat losses
- ~8hr above target temperature on one charge (~2h charge time)
- ~5°C gain in box throughout night
- Thermal Batteries still warm after 21h

Data Collected In Low Cost Box

- Taped Polypropylene Bags Insulation
- Flat Design (heat source with chicks)
- No Floor Insulation

Low Cost Brooder Box Empty Test

Key Takeaways

Chick Space Over	Chick Space Over	Near Thermal
30°C	29°C	Batteries Over 30°C
2h	3h	8h

- Temperature near batteries > Chick height Temperature indicate heat losses
- ~2hr above target temperature on one charge (~2h charge time)
- ~5°C gain in box throughout night

Low Cost Brooder Box Live Chicks Test

Inside T and Outside T versus time of day over 17 days of brooding

Temperature Gain In Brooder Box

- Survived Brooding process
- Weight comparison at 45 day

Brooder Box Comparison

Low Cost Box

- Price: ~10 USD
- Thermal Batteries(10kg): 40 USD -70 USD
- Minimal build time
- ~2h @ chick height T > 30°C on single charge
- 1.5 m2 chick surface area

Research Box

- Price: >200 USD
- Thermal Batteries(10kg): 40 USD - 70 USD
- Significant build time
- 8h @ chick height T > 30°C
 on single charge
- 1.4 m2 chick surface area

Similar Technology Already In Use

Moving Forward

Commercial Dissemination

- Identify local entrepreneurs
- Determine appropriate business model and price point
- Procure backstock of beeswax for rapid distribution

Educational Dissemination

- Identify trainers
- Run a ToT (training of trainers)
- Procure backstock of beeswax for rapid distribution

