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Preface
This document is intended to serve as a resource for technical professionals who are con-
sidering or undertaking the use of machine learning (ML) in an international development 
context. Its focus is on achieving fairness and avoiding bias when developing ML for use in 
international development. This document provides guidance on choice of algorithms, uses 
of data, and management of software development. It also illustrates the application of this 
guidance through a case study. The focus is on developing ML applications, rather than 
procuring ready-made solutions, although many of the considerations outlined in this docu-
ment are also relevant to ML procurement. 

This document is meant to be accessible to a wide range of readers, but it does assume 
some prerequisite knowledge related to machine learning. It is recommended that readers 
have a basic foundation in computer science. 

For a broader introduction to basic concepts of machine learning in the context of interna-
tional development, readers are referred to USAID’s companion document, Reflecting the 
Past, Shaping the Future: Making AI Work for International Development (Making AI Work1). 
Developed by the organization’s Center for Digital Development, Making AI Work identifies 
issues that may be encountered when implementing ML in international development and 
provides a summary of findings on the appropriate applications of ML in these settings.

Development practitioners who are addressing fair and responsible use of AI and others 
concerned about the risks of using AI in development programs may benefit from reading 
Making AI Work before reading this document. 

Whereas Making AI Work primarily targets development professionals working with technol-
ogy partners, the present document serves to support technology professionals within the 
development context. The drafting team built upon Making AI Work by describing technical 
approaches for implementing ML projects in ways consistent with the published USAID guid-
ance. The principles and practices described in this guide, in conjunction with those outlined 
in Making AI Work, aim to support the successful partnerships described by USAID:

[D]evelopment practitioners … must collaborate with technology experts to develop 
these tools for the contexts in which we work. … Many of the projects discussed in 
this report have involved collaboration between a “technology partner” and a “de-
velopment partner.” In some cases, the development partner may be based in a do-
nor agency or implementing partner (e.g., as an activity or grant manager), while the 
technology partner is contracted to deliver an ML-dependent tool. Development-
technology partnerships can also arise from situations with less formal distinctions. 
These include academic collaborations, co-creation efforts, or within an in-house in-
terdisciplinary team. 

Drafting of this document was led by the Comprehensive Initiative on Technology Evaluation 
(CITE) at the Massachusetts Institute of Technology (MIT). This work was supported initially 
through USAID’s Center for Development Research (CDR) and completed through partner-
ship with USAID’s Center for Digital Development.

1. Amy Paul, Craig Jolley, Aubra Anthony. Reflecting the Past, Shaping the Future: Making AI Work for International De-
velopment. (Washington: USAID, 2018) https://www.usaid.gov/sites/default/files/documents/15396/AI_ExecutiveSumma-
ry-Digital.pdf 

https://www.usaid.gov/sites/default/files/documents/15396/AI-ML-in-Development.pdf
https://www.usaid.gov/sites/default/files/documents/15396/AI-ML-in-Development.pdf
https://
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This chapter introduces the concepts of fairness and bias and how they apply to the use 
of machine learning. It discusses ethical hazards associated with the use of ML in decision 
making, including the phenomenon of “ethical fading” in which the use of technology can 
obscure the ethical implications of these decisions. 

The sidebar briefly defines artificial intelligence (AI) and machine learning (ML); for more 
background information on AI and ML, see Reflecting the Past, Shaping the Future: Making 
AI Work for International Development. 

The focus of this guide is on fairness in supervised ML, in which accuracy can be defined and 
outcomes assessed with respect to a set of labeled training data. Unsupervised ML, by con-
trast, finds patterns in data without any human-defined examples of "correct" answers. Ethical 
considerations in unsupervised ML are also challenging but beyond the scope of this report.

Additionally, there are other characteristics of ML deployment, outside of algorithmic con-
siderations, that can impact fairness more broadly but are outside the scope of this doc-
ument. For instance, fairness considerations may include prioritizing local ML talent over 
larger technology companies based elsewhere. Teams may wish to ensure that the data 
being collected and classified are accessible to local populations, particularly if data are be-
ing collected with the help of local residents. Involving people impacted by the ML effort in 
problem definition is another important fairness principle beyond the technical aspects dis-
cussed here. The AI Principles2 provided by the Organization for Economic Cooperation and 
Development (OECD) are an excellent resource for exploring further aspects of fairness.  

A. Defining Fairness in ML
Whereas bias — the systematic favoring of one group over another — can be measured math-
ematically, fairness is a flexible and subjective concept that must be evaluated in light of the 
circumstances and goals of the machine learning project. The Fairness, Accountability, and 
Transparency in Machine Learning (FAT/ML) community offers the following description of 
the fairness principle: 

“Ensure that algorithmic decisions do not create discriminatory or unjust impacts 
when comparing across different demographics (e.g., race, sex, etc).” 

The FAT community goes on to explain that it has left this term “purposefully under-spec-
ified” to allow it to be broadly applicable because “[a]pplying these principles well should 
include understanding them within a specific context.”  

This document takes a similarly flexible approach. Fairness is understood to refer to the pursuit 
of just and equitable outcomes. In other words, fairness avoids bias that perpetuates or rein-
forces existing social, economic, political, or cultural advantages or disadvantages. For exam-
ple, if an algorithm is more likely to disqualify women applicants from receiving loans to start 
small businesses, regardless of the applicants’ traits of creditworthiness, that algorithm could 
be said to be unfair (or unjust) in its treatment of women (or biased against them). However, it 

Chapter 1: Introduction to 
Fairness in Machine Learning

BIAS
Systematically favor-

ing one group relative 

to another. Bias is al-

ways defined in terms 

of specific categories or 

attributes (e.g. gender, 

race, education level). 

Many types of bias are 

socially or ethically 

undesirable. 

FAIRNESS
Just and equitable 

treatment across indi-

viduals and/or groups.

2. OECD. OECD Principles on AI. (Washington: OECD, 2019) https://www.oecd.org/going-digital/ai/principles/ 

https://www.usaid.gov/digital-development/machine-learning/AI-ML-in-development
https://www.usaid.gov/digital-development/machine-learning/AI-ML-in-development
https://www.oecd.org/going-digital/ai/principles/
https://www.fatml.org/
https://www.fatml.org/
https://www.fatml.org/
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is also possible that, in the pursuit of fairness, an algorithm could deliberately introduce a bias 
as a means of redressing preexisting inequities. In the small-business loan example, a model 
could be designed to rate women’s creditworthiness higher than that of men with similar cre-
dentials in order to help address longstanding barriers for women entrepreneurs. Therefore, 
while fairness and bias are related, it is not always a one-to-one correspondence. 

Fairness may be understood differently in different contexts; it requires the adoption of spe-
cific ethical constructs and value system criteria that are used to judge a given set of out-
comes and may depend on the rights and responsibilities of individuals determined by local 
laws or customs. For example, different types of tax systems take different views of fairness 
- should everyone pay the same amount? Or should they instead pay the same percentage 
of their wealth or their earnings? Or should those with more wealth pay a greater percent-
age than those with less? The answers depend on values and beliefs about how people in 
different circumstances should be treated.

Because different individuals and groups each have unique statuses, abilities, and challenges, 
an analyst — whether human or computer — must take into account all these factors in order 
to arrive at an outcome that can be understood as “fair.” For example, in a project to develop 
roads, whose access needs should be considered? Should the roads be equally safe and ac-
cessible for people on foot, riding bicycles, or driving cars, or should the needs of people 
using some modes of transportation be prioritized over others? What about people with 
physical disabilities that may need more direct access to roadways than people who can walk 
through undeveloped areas to reach public transportation on a road? Should the plan be 
designed to provide a basic level of road access to as many people as possible, or to meet 
the varying needs in the community? The particular interpretation of fairness that is adopted 
may depend on the local culture, the local government, or the specific group that is in power. 

Whether analyses are conducted by humans or computers, there are rarely perfect answers 
to complex real-world problems. One motivation for pursuing machine learning in interna-
tional development is the hope that a computer algorithm has the potential to be objective 
and impartial. However, impartiality can also mean insensitivity to the nuances of the situa-
tion, the historical inequities that have resulted in certain groups having disadvantages, and 
the needs of the different people affected by development efforts. 

B. How Fairness Can Fade with the Use of Technology
Research on human behavior suggests that there are important reasons to be concerned 
about how organizations using ML may lose track of the impact of computer programs’ de-
cisions on human beings. The increasing reliance on machine learning rather than human 
decision making can contribute to a phenomenon known as “ethical fading,” wherein indi-
vidual people or organizations suspend their ethical reasoning and make decisions based 
on other factors such as financial or practical considerations.3 Machine Learning may be 

ARTIFICIAL 

INTELLIGENCE (AI)

AI is a field dedicated 

to creating computers 

and computer soft-

ware that are capable 

of intelligent behavior. 

In some cases, such 

goals can be pursued 

by programming a 

computer with rules 

that are understood by 

humans proficient in 

those same tasks. 

MACHINE 

LEARNING (ML)

ML, by contrast, is a 

branch of artificial 

intelligence in which 

software learns how 

to perform a task 

without being explic-

itly programmed for 

the task by humans. 

In ML, the role of 

the programmer is 

to implement algo-

rithms that structure 

the learning process, 

rather than encode 

intelligence through 

a series of rules. The 

intelligence of the 

machine emerges from 

the combination of 

learning algorithms 

and data used to train 

them.
3. Ann E. Tenbrunsel,, Messick, David, M. “Ethical Fading: The Role of Self-Deception in Unethical Behavior.” Social Jus-
tice Research 17 (2004): 223–236.  
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used to distance organizational leadership from actions which can cause individual harm, 
separating the decision maker from the individuals affected, with the result that the ethical 
implication of the decision “fades” from the mind of the decision maker. With increased au-
tomation, impacts on individuals are much less visible, and ethical implications of decisions 
are more likely to be overlooked.  

Another concern is that blame or fault for a problem that arises in an ML application may be 
assigned to an individual who is not ultimately responsible for the decision making. Elish in-
troduced the term “moral crumple zone” to denote the results of the ambiguity introduced 
by layers of automation and distributed control.4 Just as an automobile contains structures 
within its chassis that can absorb the energy of a collision, people in certain roles may find 
themselves accountable when something goes wrong in a semi-automated ML system. For 
example, in a loan program that uses ML to assess creditworthiness, the loan officer may find 
herself in the moral crumple zone, taking the blame when an application is unfairly rejected. 

Ethical fading and moral crumple zones might be observed together, for example, in the use 
of an ML-backed system for guiding hiring decisions. Suppose a company adopts a new soft-
ware system that rates applicants. Ethical fading might be a concern if the company’s man-
agement uncritically accepts the ML system’s recommendations to hire disproportionately 
from a certain group. Further, if the company makes a specific hiring decision that doesn’t 
work out well, the blame is unlikely to be borne by the new software. The employee who ul-
timately wrote the employment contract may act as a moral crumple zone for the company.  

In international development, although the intent is to aid communities, the broader goals 
of the organization (such as economic or technological development) can nevertheless be-
come distanced from the individual people affected in ways that may cause hardship or 
distress for both the intended beneficiaries and the people tasked with implementing the 
program. When ethical fading occurs, individuals simply do not see ethics as their area of re-
sponsibility, often assuming that any ethical considerations are adequately addressed by the 
technology. In moral crumple zones, responsibility for ethical considerations are inappropri-
ately assigned to actors who have limited control over decisions. How can ethical fading be 
mitigated in the context of a rise in automation? How can moral crumple zones be avoided? 

A first step is to understand that automating decisions through the use of ML techniques 
will not necessarily improve equity in lending, housing, hiring, school admissions, and other 
decisions with potential life-changing implications. On the contrary, overreliance on ML can 
obscure biases existing in society and picked up by training data, as well as distance de-
cision makers from those they impact. Rather than allowing accountability to fall to front-
line implementers of ML-backed programs, accountability for results of ML implementation 
must be distributed across software engineers, those who collect and prepare data, those 
who place the software into use, and others involved in the ML process. Again, the first step 
is to acknowledge the challenge this situation poses. Additional steps are outlined in the 
following chapters. 

The next chapter will examine some of the ways that ML is used in international develop-
ment specifically and where bias can emerge in the different steps of an ML project. 

4. Madeline Claire Elish. “Moral Crumple Zones: Cautionary Tales in Human-Robot Interaction.” Engaging Science, Tech-
nology, and Society 5 (2019): 40-60.

4
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Chapter 2: ML in International 
Development
This chapter introduces some of the ways in which machine learning is being used in inter-
national development and highlights key considerations and guiding principles for its use in 
these contexts.  

A. Examples of ML Applications in International Development
This section highlights some examples of sector-specific applications of ML in international 
development and illustrates some of the emerging issues related to bias and fairness. While 
ML has been applied across many sectors in global development, this chapter highlights 
use cases in a select few sectors that serve as illustrative examples throughout this docu-
ment. Readers interested in learning more about ML applications are encouraged to read 
Artificial Intelligence in International Development,5 a recently published discussion paper 
by the International Development Innovation Alliance (IDIA), which provides a more com-
prehensive overview of ML applications and was used as a reference for this section.

Agriculture
In the agriculture sector, farmers and agriculture extension agents have used ML approaches 
such as ICRISAT/Microsoft to monitor soil quality, Plantix to identify plant diseases, and Apollo 
Agriculture to connect farmers to markets. Additionally, organizations have been using re-
mote monitoring coupled with image processing to provide higher-quality agriculture insur-
ance to farmers.

Education
In the education sector, students are using ML approaches that involve catered content to 
enable them to learn more effectively. For example, an ML program could use student per-
formance on tests to identify knowledge gaps and provide dedicated content in weak areas. 
Bolo is using ML to promote literacy by providing local content in local languages, with re-
al-time feedback. Educators are using similar ML technologies to automate the process of 
assessing student performance.

Governance
In governance, ML is being used to fill gaps in census data and other national surveys, al-
lowing for better identification of community-level problems and allocation of resources. 
Starling Data is an example of this application could involve using remote sensing for better 
infrastructure planning. Additionally, private sector and watchdog organizations are using 
ML to process and interpret natural language to determine toxicity on social media with 
programs such as Jigsaw, indicative of whether civil or human rights violations are taking 
place in specific areas.

5. Results for Development. Artificial Intelligence and International Development. (The International Development Inno-
vation Alliance, 2019): 1-8. https://observatoire-ia.ulaval.ca/app/uploads/2019/08/artificial-intelligence-development-an-in-
troduction.pdf  

https://static1.squarespace.com/static/5b156e3bf2e6b10bb0788609/t/5d7f86e2de5a2c25a5589d9a/1568638690738/AI+and+international+Development_FNL.pdf
http://http
https://www.icrisat.org/tag/microsoft/
https://plantix.net/en/
https://www.apolloagriculture.com/
https://www.apolloagriculture.com/
https://play.google.com/store/apps/details?id=com.google.android.apps.seekh
http://starlingdata.com/
https://jigsaw.google.com/
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Humanitarian
In humanitarian efforts, ML is being used in logistics and planning as well as in identify-
ing and predicting conflict. ML has been used to process and interpret images to examine 
possible human rights violation sites so that humanitarian agencies can dedicate resources 
more quickly and effectively; similarly, AIDR has used satellite imagery and social media data 
to better respond to humanitarian crises. Immigration Policy Lab has applied ML to refugee 
data to determine where displaced populations could best be relocated.

Healthcare
Several organizations are working in healthcare diagnostics in international development, 
some of which are highlighted in later chapters. For example, iKure is a social enterprise 
based in India that provides healthcare solutions for rural communities. Its team has devel-
oped a wireless health incident monitoring system that helps connect patients to health 
centers through rural health workers using a hub-and-spokes model in which workers based 
at the health centers visit patients in surrounding communities. These rural health workers 
carry basic bio-medical devices and a mobile app, which allows them to diagnose, monitor, 
and track patients. 

Workforce Development
Addressing barriers to employment is another emerging focus of ML in international de-
velopment. Aspiring Minds is an Indian company focused on employment skills testing. In 
the Indian job market, employers tend to evaluate applicants based on their academic cre-
dentials rather than their skill sets. Unfortunately, this focus makes it difficult for people 
who have not had access to higher education to find work in India. Building on the belief 
that skills are ultimately more important than academic credentials for job success, Aspiring 
Minds has developed computerized tests and ML-backed assessments to determine ap-
plicants’ strengths and match applicants with appropriate jobs. Motivated by similar chal-
lenges, Harambee, founded in South Africa, seeks to reduce the country’s persistently high 
unemployment rate by using ML to match youth at high risk of long-term unemployment or 
underemployment with jobs suited to their skills and personality attributes. 

Financial Services
Several organizations are using ML to determine the creditworthiness of individuals in ar-
eas where formal credit rating mechanisms do not exist. For example, Tala and Branch, 
used in East Africa and India provide low-interest microloans to individuals in exchange 
for access to their customer data via mobile payment platforms. These organizations then 
use ML to determine repayment rates for their users. In the solar sector, several social en-
terprises are providing solar-powered home systems using a pay-as-you-go model: solar 
equipment is leased to people with the expectation that they will pay for it over time in 
monthly installments. Some of these companies, such as Bboxx and Fenix in East Africa, 
have started using ML to determine creditworthiness based on solar asset ownership and 
payment history. 

Many more sectors are also seeing increases in the use of ML. The following section intro-
duces principles for responsible use of ML that can be applied in any sector.

http://aidr.qcri.org/
https://immigrationlab.org/
https://www.ikuretechsoft.com/
https://www.aspiringminds.com/
https://harambee.co.za
https://tala.co/
https://branch.co/
https://www.bboxx.co.uk/
https://www.fenixintl.com/
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B. Aiming for Fairness in ML in International Development
To help guide emergent efforts to leverage ML in international development, the following 
principles, or key considerations, for the development of machine learning can be used to 
assess and shape ML projects. While these ideals stem from the broader FAT community, 
they may differ slightly from the ways in which fairness and associated attributes are gener-
ally characterized in highly developed contexts. The descriptions provided here are rooted 
in how these principles present in developing markets specifically. 

One important concept for ensuring fair outcomes are achieved is having a “human in the 
loop.” This concept ensures that ML is integrated into human-powered workflows and pro-
cesses. The technology aids analysis and provides recommendations, but humans ultimately 
make the decisions.  

Many of these principles are interrelated and interdependent, and all contribute to increas-
ing fairness.

Equity: Has the ML model been tested to determine whether it disproportion-
ately benefits or harms some individuals or groups more than others? 
As discussed in Chapter 1, it is important to ensure that ML is treating people equitably. Does 
a specific algorithm fail (misclassify) people belonging to certain groups more often? Does 
it misclassify different groups in different directions, so that some groups benefit dispropor-
tionately while others are disproportionately harmed? Do certain groups have different rates 
of false positives and false negatives? 

Testing the result of algorithms against senstive variables such as gender, race, age, or reli-
gious affiliation can prevent the adoption of biased algorithms. These questions and algorith-
mic approaches to addressing them are discussed further in the coming chapters. 

It is also important to understand that accuracy and equity are not necessarily correlated. 
Algorithms can be technically accurate, yet still inconsistent with the values that organiza-
tions want to promote when making decisions such as who should be hired and who should 
receive medical care. For example, an algorithm may accurately reflect that men in the pop-
ulation have better academic credentials than women, but this trend may be due to women 
historically being denied educational opportunities. Gaining an understanding of how these 
outcomes are derived and taking steps to mitigate them — such as measuring skills and abili-
ties rather than academic credentials — is an important element in ensuring that inequitable 
algorithms are not widely adopted and used.

7
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Representativeness: Is the data used to train the ML models representative 
of the people who will be affected by the model’s application?
In order to evaluate representativeness, organizations should consider whether their ML 
model uses data that are representative of the context in which ML outputs will be de-
ployed. Analysis of this principle should also incorporate representativeness by ensuring 
that local people and knowledge contribute to consideration of this question. That is, the 
intended users and beneficiaries of the ML application should be consulted in determina-
tion of appropriate training data.

As an example, consider a startup medical diagnostics company that is trying to build a 
remote diagnostic tool for the rural West African population. High quality, coded datasets 
from West Africa may not be available, so the startup uses a European dataset to train 
their models. Some diagnoses may be accurate, but there may be vital differences in the 
ways that certain diseases present in the West African or European context, which could 
lead to misdiagnoses that put individuals at risk.

Now consider if the startup instead uses a dataset based on rural East African patient 
data. While this dataset may more closely match the context for implementation, resulting 
diagnoses from the model may overlook diseases such as malaria and yellow fever, which 
tend to be more common in West Africa, again resulting in improper diagnosis. 

Finally, consider a startup that uses a dataset from patients from the largest hospitals 
in West African countries. While this may seem like a good choice because the dataset 
captures information from a West African population, this dataset would be more repre-
sentative of urban populations than rural populations, which could also result in improper 
diagnosis.

It may not be possible to find an exact match for the training data, but it is important to 
consider all of the ways in which the data may not be representative in order to arrive at 
the best option. The best option might not be using machine learning until more repre-
sentative data is available.

Explainability: Can individual predictions or decisions be explained in hu-
man-friendly terms? 
It is important to ensure that the application is explained to end-users in a way that ef-
fectively communicates how the outcomes were determined. Communication of how 
the model works and its limitations is important for whoever is using the model or its 
outcomes. Individuals and organizations seeking to apply ML outcomes without under-
standing the nuances of how the models make decisions may use the algorithm outputs 
inappropriately. 

Increasingly, organizations are turning to “black box” machine learning approaches, whose 
inner workings can range from unintuitive to incomprehensible. In effect, only the com-
puter knows how it arrived at its decisions. In the field of artificial intelligence, “explain-
ability” generally refers to avoiding such “black box” approaches and instead ensuring 
that the sequence of operations can be understood by developers. For the international 
development context, the “explainability” term is broadened here to mean that the entire 
technology-backed prediction or decision process can be explained to the users or ben-
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eficiaries of the program. Explanation of why specific decisions were made in individual 
cases is important when decisions could have significant impacts on people. 

Consider the use of ML by a bank to determine if a person should receive a loan. If the 
bank does not understand how the model is arriving at its decisions, it may inadvertently 
or even unknowingly serve only the wealthiest customers in the target group, who might 
receive the highest ratings through the algorithm, despite the organization’s intention to 
assist low-income individuals. For each individual, explainable solutions would provide 
information on the factors that were considered, why the person was denied a loan, and 
what that person can do to attain creditworthiness. 

Auditability: Can the model’s decision-making processes and recommenda-
tions be queried by external actors?  
It is important that ML outputs can be audited externally to show that the model is fair 
and unbiased and does not introduce new problems for the target population. 

In the microloan example, external organizations need to be able to understand ML deci-
sions to ensure fair lending practices. For a medical diagnostic application, the ability to 
monitor the ML decisions could be a matter of life and death. Consider, for example, if a 
new epidemic arose that could complicate diagnoses, or if a segment of the population 
was discovered to present a certain disease differently from previously recorded cases. 
The ability to query the system and look for missed diagnoses would be vital to protect-
ing patients’ health. 

Ensuring auditability may require implementing additional organizational infrastructure, 
such as an institutional framework that requires audits and provides auditors with secure 
access to data and algorithms.

Accountability: Are there mechanisms in place to ensure that someone will be 
responsible for responding to feedback and redressing harms, if necessary? 
An accountable setup ensures there are systems in place for monitoring the use of ML to 
prevent harmful errors and ensures that specific people are responsible for addressing 
problems and correcting errors. It is important to make sure that there are human actors 
engaging with the ML system who are ultimately accountable for its results.

For example, an algorithm might be used to assist in diagnosing medical conditions, but 
the final diagnosis should still be provided by a trained medical professional. However, 
there may be more complicated situations that arise; consider if there were a shortage 
of trained medical professionals during a deadly disease outbreak. Does the risk of mis-
diagnosis outweigh the risk of not treating people? Even if the decision was made to fol-
low the ML recommendations without case-by-case oversight from a physician, someone 
must be responsible for that decision and for monitoring its outcomes.

Each of the principles connect to the guiding concept of fairness, whether by ensuring 
the solutions tackle the right problem, reflect the right people, provide value, or can be 
understood, monitored, and backed up by responsible human actors. The next chapter 
examines how concerns around fairness arise at each step in the development of an ML 
project. 
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This document focuses on development of machine learning applications. Procurement of existing, 
pre-packaged machine learning applications may require additional considerations. For example: 

RELEVANCE
Is the use of ML in this context solving an appropriate problem? 

As the use of ML becomes more widespread, organizations may seek to apply it to their work to distinguish 
themselves from competitors or increase their appeal to funders. This desire to keep up with technology 
may influence organizations to implement pre-packaged ML solutions without a clear understanding of 
whether they are using the right tool to solve the problem. 

VALUE
Does ML produce predictions that are more accurate, timely, and actionable than alternative methods? 
Can the insights be implemented? Is the cost justified?

This principle is focused on the benefit of ML approaches compared to other options. Do the predicted 
values inform human decisions in a meaningful way? Does the machine learning model produce predictions 
that are more accurate or efficient than alternative methods? Does it explain variation more completely 
than alternative models?

For further reading, visit the OECD’s guidance on Going Digital.6

ADDITIONAL PROCUREMENT CONSIDERATIONS

6. OECD. Going Digital Toolkit. (Washington: OECD, 2019) https://goingdigital.oecd.org/en/

https://www.oecd.org/going-digital/
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In this chapter, the basic steps of an ML project are briefly explored with respect to their 
potential for introducing or propagating unfairness. In addition to fairness, other support-
ing principles discussed in the previous chapter are relevant to certain steps in the process; 
this chapter aims to highlight where these considerations emerge as a project develops. A 
hypothetical example of a solar energy company providing microloans and collecting data 
about its customers is used to illustrate these bias considerations. 

Basic Steps of an International Development ML Project
This section introduces the basic steps of an ML project and considers their application in 
international development and the fairness and bias considerations relevant to each step. 

Figure 1 demonstrates how these steps map onto the ML modeling process presented in 
Making AI Work, which highlights three phases of the model development process: Review 
Data, Build Model, and Integrate Into Practice.

At several points along this process, it will likely be necessary to revisit earlier steps. Insights 
from model building may lead the team to collect additional data. Model evaluation may 
lead to the creation of additional models and/or further tuning. Deployment will involve new 
data collection, which should also lead to further model adjustments, and maintenance re-
quires regular reassessment of the model.  

It is also important to involve not only technology developers who understand ML but also 
international development professionals who understand the implementation context at 
each stage of ML development. 

Chapter 3: Fairness Considerations 
in Developing an ML Project

Figure 1 - 8 Basic Steps of an ML Project

https://www.usaid.gov/sites/default/files/documents/15396/AI-ML-in-Development.pdf
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1. Problem Definition 
Every ML project should begin with a problem-definition phase, wherein the objectives are 
defined (with the understanding that they may evolve as the project progresses). This step 
requires gathering and analyzing input from project sponsors and other stakeholders — for 
example, detailed conversations with in-country staff to understand contextual relevance of 
the problem and proposed objectives in addition to determining what data are needed to 
achieve the objectives.

Fairness considerations: Biases on the part of the people defining the problem, project 
sponsors, and other stakeholders can all be introduced at this stage. For example, how 
do these various stakeholders address questions regarding representativeness? Who is 
missing from the data? Are the people defining the problem familiar with the context or 
are appropriate experts engaged? 

SOLAR CREDIT-SCORING EXAMPLE: Assume that the organization defines the 
problem as determining the creditworthiness of individuals who are using solar light-
ing systems and appliances. Their objectives are to a) expand the size and scope of 
solar systems being provided and b) find other lending organizations that want to 
use their customer data. At this stage, it is important to test their assumptions about 
who would benefit from additional solar systems — for example, should individuals in 
off-grid areas be targeted over those who have access to other types of energy and 
are only supplementing with solar? With respect to other lending organizations, is 
repayment of loans for solar products an accurate predictor of creditworthiness for 
other types of loans? For both objectives, has any bias been introduced in the way 
that the initial round of loans was administered?

2. Data Collection
This stage involves pulling together data that is collected by the organization or acquired 
from external sources. This may include conducting a study to collect field data, purchasing 
or obtaining existing data sets, or using custom software to cull data from information
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1. Problem Definition
2. Data Collection
3. Data Pre-Processing
4. Model Creation
5. Model Tuning
6. Model Evaluation 
7. Deployment
8. Maintenance

STEPS OF AN ML PROJECT SOLAR CREDIT-SCORING EXAMPLE. To illustrate how bias 
can affect ML projects, this section uses a fictional case study of a 
company that has been providing household-level solar-powered 
products to consumers through a pay-as-you-go, rent-to-own 
model. The company loans the assets (solar panels and solar-pow-
ered devices) to the consumer and is paid back over a period of 
1 to 3 years. Asset value, product usage, and repayment history 
are all tracked along with basic demographic information about 
the consumers and their households. The solar company is look-
ing to expand its business by developing credit-worthiness algo-
rithms that can a) help the company internally decide to whom 
they should give loans for higher-value solar devices and b) pro-
vide this consumer data to external financial institutions so these 
companies can also consider providing loans to the client base. 
We consider how each step might evolve for this example.
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published online, such as social media. It is important for the organizations to collect appro-
priate data about all the different characteristics that may be associated with the different 
outcomes of interest, including protected attributes, to ensure that models are not biased. 

Fairness considerations: The data collection stage has the potential to introduce a num-
ber of systematic biases. First, the person making decisions about which types of data to 
collect can introduce their own biases, such as beliefs about how the target population 
uses social media or how they will interpret and respond to survey questions. Second, 
the data collection design can result in data that are not representative of the target 
population. Data collection may systematically exclude people who are not well-sam-
pled through the specified data collection format, such as mobile phone records, which 
exclude those without phones, or surveys conducted only in English. Information about 
people may also obscured by some data collection strategies. For example, if a mobile 
phone SIM is shared among several individuals, data drawn from the SIM may be at-
tributed only to the registered user. Third, external datasets may not be appropriate for 
use in the intended setting. For example, many well-labeled, publicly available datasets 
used in modeling come from US and Europe image databases, and may not translate 
well to low-resource settings. Additionally, it may not always be clear how external data 
were collected and whether data collection biases were introduced by whoever col-
lected those data. Finally, it is important to collect protected attribute data to be able 
to build machine learning for fairness. If these data are not collected, it is difficult to as-
sess whether outcomes are fair (see the section in Chapter 4 on the pitfalls of “fairness 
through unawareness”).

SOLAR CREDIT-SCORING EXAMPLE: Assume the company decides to collect 
data on asset usage and repayment history, as well as characteristics about its cus-
tomers. Depending on how usage is calculated, it may reflect differences in weather 
and energy needs of the household rather than the customer’s actual reliance on 
the solar-powered system. Usage of the solar device may be shared among multiple 
people, yet data used in ML models may attribute that usage to a single customer. 
How repayment history is measured could potentially introduce bias against people 
with irregular earning cycles, such as agricultural workers whose income can vary 
seasonally. Data on protected attributes should also be collected. For example, if the 
organization is dedicated to avoiding gender bias in its determination of credit-wor-
thiness, it should collect data on the gender of its customers so that it can verify that 
its algorithms are unbiased in later steps.

3. Data Pre-Processing
This step consists of data cleaning and labeling, including extraction and transfer of useful 
information in a format suitable for ML. Data cleaning refers to the identification and correc-
tion (or removal) of corrupt, inaccurate, or irrelevant entries in a database. In supervised ML, 
labeling refers to the process of assigning tags to data that indicate the quantity the user 
is trying to predict. For example, when using ML to process and interpret images, labeling 
could involve tagging every image in a database with a text description.

Fairness considerations: Data pre-processing can propagate biases from the data col-
lection stage or introduce new biases based on the labeling. If data from specific sub-

13
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7. The Appendix discusses limitations for different types of algorithms in greater detail. For the interested reader, the 
following textbooks are recommended: Stephen Marsland. Machine Learning: An Algorithmic Perspective (New York: 
Chapman and Hall/CRC, 2014) and Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. An Introduction 
to Statistical Learning. (New York: Springer, 2013). 

groups is harder (and more expensive) to label or check for accuracy, organizations may 
exclude that data, introducing biases. If labeling requires subjective input, individual bi-
ases of the data processing team can be incorporated. Furthermore, the labeler’s worl-
dview may shape how data is labeled - for example, when looking at labeling satellite 
maps to label buildings, someone who is only familiar with urban, developed setting may 
look for angular, glass-and-metal objects and miss the buildings in rural settings that 
may look different, such as having a round shape or grass roof.

SOLAR CREDIT-SCORING EXAMPLE: Assume that data for loan repayments and 
client information is collected differently based on the tools used by organizational 
staff: data can be collected electronically or in handwritten records in either English or 
local languages. Electronic data is easy to process and build a model around, whereas 
transcription of handwritten records presents a challenge and has the potential to 
introduce errors. Furthermore, translation of information from a local language to 
English may present a further barrier in terms of cost and accuracy; labeling decisions 
could reflect inconsistencies in language or difficulties in translation. The company 
may at this point choose to use only the electronic data. If the collection methods 
are uniformly distributed across the population, this may be a reasonable solution. 
However, in the more likely case that the data collection distribution is non-uniform 
— perhaps electronic data are only gathered from wealthier areas with computer ac-
cess — using only electronic data will result in a non-representative sample.   

4. Model Creation 
This step is the core of the technical process and involves selecting and developing poten-
tial models using data from Step 3. This step begins with expression of the problem in a 
form amenable to ML techniques. Informed by the problem definition (Step 1), the analyst 
can choose a suitable ML algorithm. This step involves the separation of the dataset into a 
training set for training the candidate ML models and validation sets and test sets for com-
paring model performance. At this stage, avoiding overfitting should be a consideration, 
especially with small data sets. Usually, more than one algorithm is examined to see which 
approach best suits the problem. Chapter 4 will explore this step in greater detail and pres-
ent a Fairness Methodology to guide criteria for algorithmic fairness. 

Fairness considerations: Analysts should be familiar with how different algorithms work 
to ensure that the team does not implement an algorithm that can propagate known 
biases in the data. It is, therefore, important to consider the problem definition and the 
types of data collected before determining the type of algorithm to use. As every algo-
rithm has limitations, it is possible to compound bias in the data by using an algorithm 
not well suited for the data. For example, using a Naive-Bayes approach, which assumes 
that predictors are independent of each other, might be incorrect if the predictors are 
not actually independent, (for instance, would attending college be independent from 
future earnings potential?).7
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SOLAR CREDIT-SCORING EXAMPLE: Consider one potential approach to dete 
mining whether an individual should receive a loan for additional solar equipment: a 
k-nearest neighbors (k-NN) classifier. A k-nearest neighbor approach would look at 
a given number of people (k) in the dataset who are most similar to the individual in 
question and see whether those people were given a loan or not. If the majority were 
given a loan, then the algorithm would classify the individual as someone who should 
get a loan. Even if gender is not explicitly included, this type of algorithm could con-
sider a woman applicant to be nearest to other women applicants, based on features 
that correlate with gender. If historical data are gender-biased such that the organiza-
tion provided loaned assets at a higher rate to men than to women, female applicants 
may be placed closer to unsuccessful applicants from the past, leading to a gender-bi-
ased determination that the applicant is not creditworthy. In contrast, a logistic regres-
sion model would generate coefficients corresponding to features such as gender or 
income. The higher the coefficient, the stronger the effect of that feature on the out-
come. While both models can be biased, it may be easier to identify bias in a logistic 
regression model because the features used in determining outputs are more explic-
itly presented. Chapter 4 discusses some of the ways to achieve this fairness.

5. Model tuning
Often, ML models will contain different elements such as threshold values and hyperpa-
rameters that control the learning process itself. For example, in the k-nearest neighbor ap-
proach described in Step 4, changing the value of k (a hyperparameter indicating the num-
ber of “nearest neighbors” to group together) will change how the machine learns from the 
data. Successful ML requires selecting appropriate threshold and hyperparameter values. 
Therefore, the previous steps of training and evaluation may need to be repeated many times 
to identify values that improve performance of the chosen algorithms on the chosen data set.

Fairness considerations: Tuning the hyperparameters in the model changes the under-
lying model. Hyperparameter tuning is done to improve performance, and specific per-
formance metrics (accuracy, statistical parity between groups, etc.) need to be defined 
by the ML implementer. Additionally, the selection of thresholds for decision-making 
based on model results are also determined at this step. Many problems will also have 
tradeoffs between fairness and performance or between how fairness is implemented 
for different groups. The selection of performance metrics and thresholds, and deci-
sions about how an analyst deals with tradeoffs, can reflect individual or organizational 
biases.

SOLAR CREDIT-SCORING EXAMPLE: Assume that the company decides to im-
plement a logistic regression model. When used in classification, the analyst must 
determine a threshold value at which to approve or reject an individual for a loan. 
The company’s data indicates that men and women have different loan default rates, 
which the analyst interprets as different likelihoods of repaying a new loan. The goal 
is to correct for this bias to make the loan decision fairer. The analyst’s choice of 
threshold values can either minimize errors (misclassifications of creditworthiness) 
in women, minimize errors in men, or equalize errors in both groups (as shown in 
Figure 2). Equalizing errors for both groups in this case will increase false positive 
errors for one group while increasing false negative errors for the other.
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Figure 2 -  Sample ROC curve for multiple groups, showing different
possible operating points for the algorithm

6. Model Evaluation
A key step in every ML project is model evaluation. Models are evaluated against predeter-
mined metrics — such as accuracy, performance, and speed — to decide which approach is 
most suitable. At this point, if models do not meet criteria for deployment, the implementer 
may revisit the model creation step or even an earlier step.

Fairness considerations: The choice of criteria to compare between models should re-
flect the values of the organization and should be well documented to promote exter-
nal auditing or explainability. For example, different models may emerge as preferable 
depending on whether a greater priority is preventing false negatives or false positives. 
The choice of training data might also need to be revisited to avoid replicating biases 
reflected in the data.

SOLAR CREDIT-SCORING EXAMPLE: Suppose the data shows a link between 
default rates and gender. A strict evaluation criterion for the highest accuracy ap-
proach would introduce bias into the system because of this gender difference (dis-
cussed in more detail in Step 5). In order to implement fairness methods (discussed 
further in Chapter 4), the organization may choose to sacrifice accuracy in favor of 
creating fairer rules for evaluating male and female candidates. Rather than using a 
strictly representative sample, the company could consider creating a training data 
set with equal numbers of default rates among men and women.

7. Deployment
During this step, the ML algorithms are deployed in the field — often first in beta (small-scale, 
controlled, and manually audited), then increasingly scaled up after the model is verified to 
be working correctly It is important to note that deploying the model to a new region/ con-
text should also be beta-tested and scaled slowly. In the context of international develop-
ment, this step often involves integrating the ML system into a decision-making process.
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Fairness considerations: The integration of a model into the real world is a complex pro-
cess that presents many ethical challenges. The appropriate use of the model, including 
its limitations and processes for accountability, must be clearly communicated to us-
ers. This communication includes technical information about the model (the model ap-
proach, accuracy, errors, and tradeoffs made in the design) as well as where, how, and for 
whom the model should be used based on the representativeness of the training data.

SOLAR CREDIT-SCORING EXAMPLE: Assume that the organization was using a 
credit-worthiness model to determine which of its clients should be offered loans for 
purchasing a solar-powered television. The model made use of information about 
who was most likely to purchase and use a solar-powered television, which deter-
mined that specific individuals living in off-grid communities were good candidates. 
For logistic simplicity, the organization may choose to distribute solar-powered tele-
visions to regions that have more of these individuals, which unfairly impacts quali-
fied individuals living in other regions.

8. Maintenance
As machine learning models are deployed and additional data is collected, the team will 
continue to learn more about the problem, including potential shortcomings. The mainte-
nance team is responsible for keeping the model updated with new data and retraining the 
model as needed. Newer and better algorithms may also become available and can be in-
corporated as the project evolves.

Fairness considerations: Even if the training dataset is highly representative of the tar-
get population when it was collected, as time goes by, the models can become less ac-
curate given changing circumstances for the population. As a result, it is important to 
regularly audit the models to check for and rectify any biases and unintended negative 
consequences introduced by changes on the ground. Lack of bias in the model evalua-
tion and interpretation stage does not guarantee lack of bias at scale.

SOLAR CREDIT-SCORING EXAMPLE: Imagine that a country in which the com-
pany is operating imposes a regressive kerosene tax that adversely affects the rural 
population of solar asset users. While the population adjusts to the tax, the model 
may reject loans for those affected because their available disposable income has 
gone down. This outcome would present at just the wrong time, given that access 
to solar energy could reduce dependence on kerosene and improve applicants’ fi-
nancial outlook. Adjusting the model to account for this change would create fairer 
outcomes.
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Chapter 4: Building for Fairness
This chapter explores the application of the principles for responsible ML development dis-
cussed in Chapter 2 to the steps of ML project development outlined in Chapter 3. It con-
siders practical approaches to problem definition (Step 1), mitigating bias in data sets (Steps 
2 and 3), model creation, tuning, and evaluation (Steps 4, 5, and 6), and ML deployment and 
maintenance (Steps 7 and 8). 

A. Asking the Right Question for ML
This section focuses on key aspects of Step 1, Problem Definition. When any ML model is 
used in decision making, it is important to consider first whether the right question is being 
asked and secondly whether ultimately a machine should be making this determination.

Too often, errors occur because the framing of the problem is incorrect. Programmers must 
consider what it is exactly that they wish to know and which problem they want to solve. 
Although ML may not be capable of answering a question directly, some proxies are better 
than others for delivering fair and useful outcomes. For example, if the goal is to help unem-
ployed people find jobs, the ideal but impractical question may be, “Who is best suited for 
the open positions?” It is difficult to measure suitability directly for candidates who don’t yet 
hold those jobs as their performance in them can’t be known. To approximate suitability in a 
way that prioritizes fairness, it may be important to ask, “Who is likely to succeed in the open 
positions?” rather than “Who has held positions like these before?” The latter question may 
reproduce existing inequities, whereas the former question, depending on how “likelihood” 
is defined, could identify a broader range of capable individuals. 

Before proceeding, it’s also important to ascertain whether it’s appropriate for a computer 
to answer the question. Although neither computers nor humans are perfect (and, after all, 
humans write the computer programs), certain moral and ethical questions in development 
projects may have consequential impacts on people’s lives, leading programmers to con-
sider at the outset if they really want a computer conducting the analysis. In an emerging 
refugee crisis, for instance, determining who can access different types of resources and 
services may demand the compassionate wisdom of experienced leaders rather than com-
puter algorithms. 

B. Mitigating Bias in Data Sets
This section explores Steps 2 and 3: Data Collection and Data Pre-Processing, to introduce 
methods of addressing bias in data sets. Examples of bias in data sets include under-sam-
pling for racial, cultural, and gender diversity in image recognition, such as categorizing 
wedding photos only when the bride is wearing clothes of a specific color in accordance 
with cultural norms.8 The issue of image datasets underrepresenting certain ethnicities 
is also known in facial recognition, where classification accuracy suffers when images of 
underrepresented minority individuals are analyzed.9 In a third example, voice recognition 

PROXY
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8. Shreya Shankar, Yoni Halpern, Eric Breck, James Atwood, JimboWilson, D. Sculley. “No Classification without Repre-
sentation: Assessing Geodiversity Issues in Open Data Sets for the Developing World.” In Advances in Neural Informa-
tion Processing Systems, Long Beach, CA, 2017.  
9. Larry Hardesty, “Study finds gender and skin-type bias in commercial artificial-intelligence,” MIT News Office, Febru-
ary 11, 2018,  systemshttp://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212
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systems are well known to perform more poorly for non-native English speakers than native 
speakers,10 which results in incorrect answers to questions posed to popular voice-based as-
sistant systems. 

When bias arises in a data set, methods for addressing this include addressing the sampling 
of the data, cleaning the data and labels, or adding, removing, diversifying, or redistributing 
features. 

Table 1 provides further resources for the more technical approaches discussed in this section.

Table 1 - Further Reading for Addressing Bias in Datasets

APPROACH RECOMMENDED RESOURCES

Data 
Augmentation

Fedor Kitashov, Elizaveta Svitanko, Debojyoti Dutta. “Foreign 
English Accent Adjustment by Learning Phonetic Patterns.” ArXiv 
(2018): 1-5. https://arxiv.org/abs/1807.03625  

Feature-level 
Reweighting

Stefano M. Iacus, Gary King, and Giuseppe Porro. “Causal Inference 
Without Balance Checking: Coarsened Exact Matching”. Political 
Analysis 20, no 1 (2012): 1-24, http://j.mp/2nRpUHQ

Resampling 
through 
Randomization 
of the Minority 
Class

B. Efron. “Bootstrap Methods: Another Look at the Jackknife.” 
The Annals of Statistics 7, no. 1 (1979): 1-26. www.jstor.org/
stable/2958830.
Gerdie Everaert and Lorenzo Pozzi. “Bootstrap-based Bias 
Correction for Dynamic Panels.” Journal of Economic Dynamics & 
Control 31, no 4 (2007): 1160–1184.

SMOTE: 
Synthetic 
Minority 
Over-sampling

Nitesh V. Chawla, Kelvin W. Bowyer, Lawrence O. Hall, and W. 
Philip Kegelmeyer. “SMOTE: Synthetic Minority Over-Sampling 
Technique”. Journal of Artificial Intelligence Research no 16 (2002): 
321-357. https://doi.org/:10.1613/jair.953

Adversarial 
Learning 
Approaches

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. “Mitigating 
unwanted biases with adversarial learning”.In proceedings of AAAI/
ACM Conference on AI, Ethics, and Society (New York: Association 
for Computing Machinery, 2018): 335-340. 
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, 
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua 
Bengio. “Generative Adversarial Nets”. In proceedings of 27th 
International Conference on Neural Information Processing 
Systems 27, Montreal, December 2014. https://papers.nips.cc/
paper/5423-generative-adversarial-nets 
Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based 
Generator Architecture For Generative Adversarial Networks.” 
In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR, 2019): 4401-4410

10. The Economist, “In the world of voice-recognition, not all accents are equal,” The Economist, February 15, 2018, 
https://www.economist.com/books-and-arts/2018/02/15/in-the-world-of-voice-recognition-not-all-accents-are-equal
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Gathering more diverse data is the preferred option when cost and time permit. Having a 
more diverse data set almost always helps ML algorithms make decisions more accurately and 
more fairly. The outcomes observed in the examples above are essentially a side effect of what 
statisticians would call “sampling bias” – when a project attempts to model a phenomenon for 
an entire population but accidentally selects a sample not representative of that population. 
For example, trying to create a model that would respond to all English speakers but obtain-
ing training samples only from British and American speakers will result in poor performance 
for speakers from other places. However, it is possible that even with a representative sample 
an algorithm may under perform on minority groups. The solution would be to oversample mi-
nority groups, which would then increase accuracy of the algorithm for those minority groups. 

Data augmentation11 refers to a family of techniques that increase the size and diversity of 
the training data without actually collecting more data. The effectiveness of data augmen-
tation has been demonstrated in image recognition tasks through techniques like cropping, 
rotating, flipping, and darkening input images. For example, one technique for data aug-
mentation in natural language processing is to generate training sets with accented ver-
sions of the words available in the base dialect of the training set. 

Feature-level reweighting12 describes a family of approaches in which features are assigned 
weights (multiplied by scalar values) to make the data more representative. The weights 
are usually adjusted so that the classifier algorithm meets some criteria of fairness. A com-
mon approach is to repair data by more heavily weighting selected features of the sensitive 
group to equalize misclassification error rates. This is a standard technique in statistics and 
is often useful for other purposes, including matching for causality. In the natural language 
processing example, one could reweight features correlated with protected attributes in or-
der to deemphasize them. 

Resampling through randomization of the minority class13, 14 is a variant of the “bootstrap” 
technique from statistics, which is used for bias correction in estimators and can be used to 
boost the number of elements of the minority class by sampling more of that minority class 
through random sampling with replacement. This approach effectively increases the num-
ber of elements of the minority class as seen by the classifier. Of course, this solution is not 
as good as increasing the sample size by collecting more data for the minority, as suggested 
in the first solution in this list (gathering more diverse data). In the natural language process-
ing example, assuming that fewer samples were collected from non-native English speakers 
than from native English speakers, this approach would involve randomly resampling from 
the non-native English speaker samples to increase their representation in the data set.

SMOTE (Synthetic Minority Over-sampling Technique)15 is a generalization of the resa-
mpling approach described above that further includes a k-nearest-neighbor approach in 
order to generate “synthetic” minority class members. This approach goes beyond a simple 

11. Fedor Kitashov, Elizaveta Svitanko, Debojyoti Dutta. “Foreign English Accent Adjustment by Learning Phonetic Pat-
terns.” ArXiv (2018): 1-5. https://arxiv.org/abs/1807.03625  
12. Stefano M. Iacus, Gary King, and Giuseppe Porro. “Causal Inference Without Balance Checking: Coarsened Exact 
Matching”. Political Analysis 20, no 1 (2012): 1-24, http://j.mp/2nRpUHQ
13. B. Efron. “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics 7, no. 1 (1979): 1-26. www.jstor.
org/stable/2958830
14. Gerdie Everaert and Lorenzo Pozzi. “Bootstrap-based Bias Correction for Dynamic Panels.” Journal of Economic Dy-
namics & Control 31, no 4 (2007): 1160–1184. 
15. Nitesh V. Chawla, Kelvin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. “SMOTE: Synthetic Minority 
Over-Sampling Technique”. Journal of Artificial Intelligence Research no 16 (2002): 321-357. https://doi.org/:10.1613/jair.953
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ALGORITHMIC  
FAIRNESS
Design of algorithms 

to achieve fair out-

comes.

PROBABILITY
Likelihood of an event 

occurring.

CONDITIONING
Specifying certain 

conditions, often as 

a given set of data, un-

der which probability 

will be evaluated.

bootstrap: instead, the nearest neighbor of the resampled element is computed and this in-
formation is used to generate a new element using a random value within the range given 
by the difference between the resampled element and its nearest neighbor. Generating this 
new element effectively creates a new “synthetic” member of the minority class that pro-
vides more variation for the classifier by supplying a new data point.16, 17, 18

Adversarial learning19 approaches address biases in prediction due to protected attributes 
by applying adversarial learning. In this approach, there are two machine learners – one pre-
dicting the output, and the other predicting the protected attribute — in order to converge 
on a model that predicts the correct outcome independent of the protected attribute. 
Adversarial models have been popular in image classification. These emerging techniques 
are not entirely generalizable just yet, but provide a good opportunity for future research. 
If this approach were to be applied to the natural language processing example, it would 
involve one ML program predicting the words spoken, and another ML program predicting 
the status of the speaker (native or non-native English) based on the output of the language 
processing program. If the status of the speaker could be predicted based on the output of 
the language processor, it would indicate bias in prediction.

The next section delves into different criteria for evaluating fairness in an algorithmic model 
and how these criteria can be selected and applied in machine learning.  

C. Model Creation, Tuning, and Evaluation for Algorithmic Fairness
This section focuses on fairness in Steps 4, 5, and 6: Model Creation, Model Tuning, and 
Model Evaluation. This statistical perspective on fairness is the predominant focus of this 
section. Therefore, some background on statistical reasoning is explained in the first section 
to provide conceptual context for the reader.  

Background on Probability and Conditioning 
This section introduces the basic concepts of probability and conditioning on which the dis-
cussion of algorithmic fairness relies. Readers familiar with these concepts may be comfort-
able skipping to the next section; however, this section illustrates the application of these 
concepts to decision-making in a way that may be useful in the selection of algorithms dis-
cussed in the appendix. 

Definitions of algorithmic fairness and criteria for evaluation of algorithmic fairness are of-
ten stated in terms of probabilities in general and conditional probabilities in particular. 

A probability can be viewed as a measure of the likelihood of an event. The probability of a 
six on a roll of a die is 1/6 because there are six sides and they are all equally likely to appear.  
A probability can also be conceived as a frequency of an event within a sufficiently large 

16. Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. “Borderline-SMOTE: a new over-sampling method in imbalanced data 
sets learning.” In International Conference on Intelligent Computing, August 2005, edited by D.S. Huang, X.-P. Zhang, G.-B. 
Huang, 3315-3323, New York: Springer. https://sci2s.ugr.es/keel/keel-dataset/pdfs/2005-Han-LNCS.pdf
17. Tomasz Maciejewski and Jerzy Stefanowski. “Local neighbourhood extension of SMOTE for mining imbalanced data.” 
In 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM) (New York: IEEE, 2011): 104-111. https://
doi.org/10.1109/CIDM.2011.5949434
18. Chumphol Bunkhumpornpat, Krung  Sinapiromsaran, Chidchanok  Lursinsap. “Safe-level-smote: Safe-level-synthetic 
minority over-sampling tech nique for handling the class imbalanced problem.” In Pacific-Asia conference on knowledge dis-
covery and data mining, 2009, edited by T. Theeramunkong, B.  Kijsirikul, N.  Cercone, T.  Ho, 475-482. New York: Springer. 
https://doi.org/10.1007/978-3-642-01307-2_43
19. Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. “Mitigating unwanted biases with adversarial learning”.In pro-
ceedings of AAAI/ACM Conference on AI, Ethics, and Society (New York: Association for Computing Machinery, 2018): 
335-340. https://doi.org/10.1145/3278721.3278779
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population or sequence of similar opportunities. In this frequency conception, the probabil-
ity of a six on a roll of a die is 1/6 because, in the past, very nearly one out of six rolls were 
observed to be six whenever a large enough sample was evaluated. In this section, the fre-
quency conception will be emphasized for its relevance to the example scenario. 

The concept of conditioning relates to the connection between probabilities and data. A 
conditional probability is the probability of an event occurring under a specified condition, 
i.e. given some relevant data.  

For example, assume a 40-year-old woman, Beth, is considering whether to get a mammo-
gram. She learns that 1% of women aged 40 to 50 have breast cancer. The mammography 
procedure she is considering has a 9.6% false positive rate and an 80% true positive rate. 
Beth decides to get a mammogram screening and receives a positive mammogram result.  

Statistical procedures tell us that, prior to the test, Beth had a 1% probability of having 
breast cancer. The conditioned probability that she has breast cancer, given the data of her 
positive test result, reveal that Beth has a 7.8% probability of having breast cancer. Figures 
3 and 4 and the step-by-step process below explain why.

Assume a population of 1000 women aged 40 to 50. On average, 1% of women in that age 
range will have breast cancer. This means that the 1000 women can be partitioned into two 
sets: the 10 who have the disease and the vast majority (990 women) who do not. If there 
are only two groups, and everyone must fall into one group or the other, this process can be 
described as a collectively exhaustive partitioning of the set. Collectively exhaustive parti-
tioning can be applied in this case because the example makes a binary distinction between 
people who have cancer and those who do not.  

22

Figure 3 - Out of a population of 1000 women, 990 women can be expected to 
be cancer-free and yet 95 of them will screen positive (false positive). Among 

the 10 women who do have cancer 8 will screen positive (true positive).  
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This example requires one more layer of partitioning. Because the mammography test re-
sult will be relevant to the case, the next layer of events is based on the two possible test 
results: positive and negative.  

For the women who do not have breast cancer, there are two possibilities: a false positive 
or a true negative result. Because the population of women who do not have breast can-
cer is large and the false positive rate is substantial (9.6%), there is a large number of false 
positives in our population (95 women). For the women who do have breast cancer, there 
are two possibilities: a true positive or a false negative result. Because the test has a good 
power (ability) to detect the disease (80%), there is also a considerable number of true pos-
itives in our population (8 out of the 10 women with breast cancer).  

Figure 4 - A total of 103 women received a positive result from their cancer screenings. 
Only 8 of these women actually had cancer. The probability of having breast 

cancer given a positive result is therefore 8/103 = 7.8%.

Beth’s mammography test result enables us to condition the events in our example. We 
don’t know for sure whether Beth has cancer or not, but we do know that she received a 
positive test result, so we can rule out the false negative and the true negative categories. 
The only remaining events after conditioning are the 95 women in the population with a 
false positive and the 8 women with the true positive results. Given those proportions, we 
can infer that the probability that Beth has breast cancer is 8 out of (95+8), which is 7.8%. 
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As this example illustrates, conditioning a probability based on data is a process of elimina-
tion followed by assessment of proportions.   

To compute a conditional probability accurately and reliably, the following three steps are 
recommended:

1. Enumerate all the events that were possible prior to having the new data.  List ev-
ery event in such a way that they are finest grained (all the layers of known possi-
bilities are outlined), mutually exclusive (an event can have only one of the possible 
finest-grained outcomes), and collectively exhaustive (each event must achieve one 
of the possible outcomes). Place number labels on each event that accurately reflect 
the proportions as you understand them to occur in the general populations (aka the 
“base rates”).

2. Take account of the new data that came to light.  Eliminate all the events that are 
ruled out given the new data.

3. Recalculate the relevant frequency by inspecting the proportions among the remain-
ing possibilities.  

Figure 5 - In this notional example, 100 men defaulted and 200 women defaulted 
which could lead to a biased lending decision. However, women were far less likely to  

have held formal employment within the last 7 months. Women and men ex-
periencing similar employment conditions defaulted at similar rates.
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A Statistical View of Algorithmic Fairness 
The previous section explains the thinking behind predictions based on conditional prob-
ability. Machine learning holds out the promise that these types of patterns in data can be 
discovered by computers and used for making predictions. However, without human over-
sight, machine learning may introduce or replicate biases that result in unfair outcomes.

Consider, for example, the challenge of making loans to people who want to buy solar lan-
terns.  Assume that a company applied ML to a data set and trained an algorithm to predict 
who is going to default on their loan payments. Subsequently, the company finds that the 
algorithm appears to be treating women unfairly. Out of 500 men to whom the algorithm 
is applied, 100 were predicted to default. Out of 500 women to whom the algorithm is ap-
plied, 200 were predicted to default. Given the disproportionate outcome and potential un-
fair treatment between two groups,  the company investigates the model further. 

The company discovers that the machine learning algorithm was trained on data that had 
proportions as indicated in Figure 5. In this hypothetical case, the machine learning system 
produced predictions that exactly matched the proportions in the training set.  In that sense, 
the ML system was accurate. If the patterns in future loans are similar to those in past loans, 
the ML algorithm might have a good record of predicting future defaults. Nevertheless, the 
company might still be deeply concerned about how unfairly women are being treated be-
cause they are rejected at twice the rate of men, potentially based on embedded cultural 
and systemic biases in historic data.  

Upon further analysis of this data, the company recognizes that default rates were affected 
by the history of formal employment. Women were far less likely to have held formal  em-
ployment within the past 7 months. Moreover, women’s conditional default rates, given their 
employment status, were comparable to men’s: Among applicants who lacked formal em-
ployment in the past 7 months, 71.4% of men defaulted compared to 75% of women; among 
applicants who had no gaps in employment, 19.3% of men defaulted compared to 16.7% of 
women. 

Uncovering discrepancies in employment and making this link to conditional probabilities is 
a key take-away of this example. If the solar lantern company consistently uses the ML algo-
rithm for lending decisions, there will be an unfair distribution of benefits. The conditional 
probability of rejecting a qualified loan application given the borrower is male is 20%. The 
conditional probability of rejecting a qualified loan application given the borrower is female 
is 40%. 

However, if the company considers the unequal employment conditions that the applicants 
in the training data experienced, it finds that women were no more likely to default than 
men in equivalent circumstances. The next section explores ways to mitigate such problems.

Algorithmic Criteria for Fairness
This section reviews some of the most widely used, historically important, or key emerging 
algorithmic criteria for fairness. The discussion focuses on four core approaches known 
widely in the computer science literature: demographic parity, equalized opportunity, equal-
ized odds, and counterfactual fairness. All of these approaches seek to improve the fairness 
of outcomes by establishing a criterion for fairness and modifying an algorithm to meet 
goals with respect to that criterion. However, enforcing a fairness criterion does come at the 
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Table 2 - Advantages and Disadvantages of
Criteria for Algorithmic Fairness

CRITERION ADVANTAGES DISADVANTAGES

Fairness 
through 
unawareness

• Simple to implement

• Not effective unless some 
unusual criteria are satis-
fied (no correlated attri-
butes)

Demographic 
parity

• Conceptually simple
• Can have legal standing 

(disparate treatment)

• Does not address 
individual-level fairness

• May unacceptably 
compromise prediction 
accuracy 

Equalized 
opportunity

• Appeals to a reasonable 
interpretation of fairness

• Can be a good option 
if the true positive rate 
is most consequential 
factor

• Disparate false negative 
rates may remain between 
two populations 

• Requires lots of labeled 
historical data

Equalized odds • Appeals to a reasonable 
interpretation of fairness

• May not address group 
disparities sufficiently

• Can be inconsistent with 
high levels of accuracy

cost of accuracy, which is to be expected as a fairness criterion is an additional constraint 
(see Zafar et al 2018 in the Further Reading list at the end of this chapter for examples of 
this trade-off).

It is important to acknowledge that fairness may not be 100% achievable in every ML ap-
plication. While the goal may be to design a completely fair ML application, failure to do so 
should not be a reason to abandon ML entirely but rather a motivation to continue improv-
ing over time. Those employing ML in international development contexts should ensure 
frank and transparent discussions of what is possible within the existing constrains and what 
will be considered acceptable in terms of achieving fairness for a specific project at its var-
ious stages.

The advantages and disadvantages of each approach are summarized in Table 2 and dis-
cussed within each subsection. Although “fairness through unawareness” is presented first, 
this criterion is not recommended for ML applications. The discussion begins by explaining 
why this common approach introduces unacceptable risk in terms of bias. 
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This section does not seek to be comprehensive because there are so many options for fairness ap-
proaches available in the literature. Some excellent criteria have emerged in recent years, such as use of 
equality indices from economics.20 Some of the best recent work is beyond the scope of this chapter; de-
scribing its advantages would require prerequisite explanations not covered here. For example, Spelcher 
et al. (2018) proposed a means of formulating objective functions for automated decision making based 
on formulations of cardinal social welfare in economics. All criteria have limitations; for example, the work 
of Heidari et al. does not address individual fairness. In this section we focus on the four core algorithmic 
fairness criteria commonly cited in the computer science community (demographic parity, equalized op-
portunity, equalized odds, counterfactual fairness) and rebut fairness through unawareness (which is an 
ineffective approach to fairness). Readers are encouraged to explore the “Further Reading” list on page 
31 to learn more other criteria (for example, Verma and Rubin 2018). 

20. Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Krishna P. Gummadi, Adish Singla, Adrian Weller, and Muhammad 
Bilal Zafar. A Unified Approach to Quantifying Algorithmic Fairness: Measuring Individual and Group Fairness via 
Inequality Indices. (London: KDD, 2018)
21. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and 
Yoshua Bengio. “Generative Adversarial Nets”. In proceedings of 27th International Conference on Neural Information 
Processing Systems 27, Montreal, December 2014. https://papers.nips.cc/paper/5423-generative-adversarial-nets 
22. Tero Karras, Samuli Laine, and Timo Aila. “A Style-Based Generator Architecture For Generative Adversarial Networks.” 
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2019): 4401-4410

ADDITIONAL FAIRNESS CRITERIA

Not Recommended: Fairness Through Unawareness
One approach for addressing fairness in ML is to remove protected attributes from the data 
set, commonly known as “fairness through unawareness.” While this approach may seem 
intuitive, due to correlations in the data, it is possible — and in practice frequent — that re-
moving the protected attributes actually increases unfairness. The primary underlying flaw 
of the fairness-through-unawareness approach in ML is that the protected attributes whose 
overt labels are removed from the data sets are often correlated with other features that 
remain in the training data.  

Generally, the design of the machine learning solution should include clear steps to avoid 
discriminating based on protected attributes and algorithm implementation should include 
checks after the training of the algorithm is complete to ensure that biases from the training 
data were not picked up inadvertently. For example, researchers have shown bias in word 
embeddings, a natural language processing technique of growing use and popularity, as 
programs tended to pick up gender stereotypes embedded in words that did not explicitly 
specify gender, such as associating “computer programmer” with “man” and “homemaker” 
with “woman.”21, 22

This result could be due to historic patterns in the data that correlate with past discrimination 
trends – for example, districts or neighborhoods correlating with ethnicity or socio-economic 
status – or due to “redundant encodings.” In redundant encodings, other variables essentially 
encode the same information as the removed protected attribute. An example of such a re-
dundant encoding could be belonging to groups or organizations that are gender specific. 
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Figure 6 - Fairness through unawareness of gender applied to solar lantern 
training data. Here the label of “man” and “woman” has been removed. The default 

rates in the training data can be seen to be higher among applicants who 
lacked formal employment in the past 7 months.   

To illustrate for the international development context, Figure 6 returns to the solar lantern 
case to describe what happens if “fairness through unawareness” of gender is pursued. The 
figure depicts the data on which the ML algorithm is trained if the protected label of gen-
der is removed. It reflects the very same data set as in the previous section, but aggregates 
the numbers across the genders. From this data set, the machine learning algorithm should 
learn that conditional probability of defaulting given the borrower lacked formal employ-
ment is 155/207 or nearly 75%. The conditional probability of defaulting given the borrower 
had formal employment within the past 7 months is 145/793 or about 18%.

The problem, in this case, is that women tended to lack a record of formal employment in 
the recent past. Of the people who had no formal employment, 200/207 or about 97% 
were women.  Conversely, of the people who had no gap in formal employment, 300/973 
or about 30% were women.  

If the solar lantern company consistently uses the “fairness through unawareness” ML al-
gorithm for lending decisions, there will still be an unfair distribution of benefits. Figure 7 
applies the known facts about gaps in employment to disaggregate rejected applicants by 
gender. The conditional probability of rejecting a loan application given the borrower is 
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Figure 7 - Fairness through unawareness results for gender.  Removing the gen-
der label does not resolve the bias against women applicants because a key 
attribute in the data set — formal employment — is associated with gender.

male will be 107/500 or about 21%. The conditional probability of rejecting a loan applica-
tion given the borrower is female is 193/500 or about 38%. The fairness through unaware-
ness approach left the 2:1 disparity in rejection rates nearly unchanged.

Figure 7 illustrates how the fairness-through-unawareness approach reproduces the bias 
against women applicants, because a lack of formal employment in the last 7 months is 
closely associated with gender. Using this approach and rejecting applicants who are pre-
dicted to default, 193 women would be rejected for loans in contrast to 107 men -- nearly the 
same proportions as seen in the gender-labeled data (see Figure 5).

The hypothetical example using solar lantern sales was developed to make a point, but 
it is not an unrealistic scenario. Researchers at Carnegie Mellon University revealed that 
Google ad listings targeted to those seeking high-income jobs were presented to men at 
nearly six times the rate they were presented to women,23 despite the fact that gender had 
been treated as a protected attribute. In the Amazon resume tool example, bias emerged 
from the data used to train the ML algorithms, which consisted of actual resumes submitted 
to Amazon over a 10-year period. Because historically men were more likely to have been 
hired/successfully evaluated, they were understood (by the model) to be better applicants. 
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23. Amit Datta, Michael Carl Tschantz, and Anupam Datta. “Automated Experiments on Ad Privacy Settings.” In proceed-
ings on Privacy Enhancing Technologies, 1 (2015): 92–112. https://doi.org/10.1515/popets-2015-0007
24. OECD. Social Institutions and Gender Index. (Washington: OECD, 2020) https://www.genderindex.org/ 
25. Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Rich Zemel. “Fairness through Awareness”. In pro-
ceedings of the 3rd Innovations in Theoretical Computer Science Conference. (New York: Association for Computing Ma-
chinery, 2012): 214-226. https://doi.org/10.1145/2090236.2090255

The mathematical formulae associated with these four fairness criteria in the computer 
science literature are provided in Table 3. Readers are referred to the publications in the 
right-hand column for discussions of these formulae. Full references are provided in the 
Further Reading list. 

RECOMMENDED RESOURCES: MATHEMATICAL FORMULAE & FURTHER READING

As a result, the computer system learned to penalize unprotected features associated with 
women, such as downgrading candidates who graduated from all-women’s colleges. In this 
example, the bias against female job applicants was a function of the training set. Amazon 
edited its algorithm to explicitly instruct it to be neutral toward such factors as all-women’s 
colleges. This is, in effect, an extension of the fairness-through-unawareness approach to 
eliminate not only the explicit label for the protected class but also data elements that are 
clear correlates with the label. The company acknowledged that this is no guarantee for 
avoiding discrimination, and it is indeed a very limited remedy. 

The Google ad listing tool and Amazon resume tool examples demonstrate that the fair-
ness-through-unawareness-approach may support inequality if the underlying model relies 
on historical datasets that contain hidden prejudices against underrepresented groups.  For 
example, prior political histories of countries can still result in pervasive inequality even after 
anti-discrimination laws are implemented. Entrenched disparities in wealth and opportuni-
ties can persist, resulting from systemic, institutionalized processes such as racial segrega-
tion, forced migrations, gender-restricted education,24 and discrimination based on caste. 

In contrast with fairness-through-unawareness, other, more interventionist remedies to ML 
fairness take a more proactive approach that explicitly addresses data imbalances. Again, 
fairness through unawareness is not recommended and the examples given above serve as 
a warning that it is an ineffective approach to fairness. The four criteria examined in the next 
subsection require a deeper level of intervention than fairness through unawareness and 
present a more promising approach to building for fairness. 

Fairness Through Awareness
The remainder of this section addresses “fairness through awareness,”  in which protected 
attributes are explicitly employed in the ML models. Each subsection covers a different cri-
terion for algorithmic fairness: demographic parity, equalized opportunity, equalized odds, 
and counterfactual fairness.
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CRITERION FORMULA
REFER-
ENCES

Demographic 
Parity Hardt 2016; 

Verma 2018
Equalized  
Opportunity

Equalized Odds

Counterfactual 
Fairness

Kusner et 
al 2017

Further reading on algorithmic criteria for fairness 

The following publications are recommended for further reading on this topic:

 » Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. 
“Man is to computer programmer as woman is to homemaker? Debiasing word embed-
dings.” In Advances in Neural Information Processing Systems 29, Barcelona, December 2016, 
4349-4357.

 » Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Rich Zemel. “Fairness 
through Awareness”. In proceedings of the 3rd Innovations in Theoretical Computer Science 
Conference. (New York: Association for Computing Machinery, 2012): 214-226. 

 » Moritz Hardt, Eric Price, and Nati Srebro. “Equality of opportunity in supervised learning.” 
In Advances in Neural Information Processing Systems, edited by D.D. Lee, M. Sugiyama, 
U.V. Luxburg, I. Guyon, and R. Garnett (New York: Curran Associates Publishers, 2016): 
3315-3323.

 » Matt Kusner, Joshua Loftus, Chris Russell and Ricardo Silva. “Counterfactual fairness.” In 
Advances in Neural Information Processing Systems, Long Beach, CA, 2017: 4066-4076. 

 » Sahil Verma and Julia Rubin. “Fairness definitions explained.” In IEEE/ACM International 
Workshop on Software Fairness (New York: ACM, May 2018): 1-7. 

 » Muhammad Bilal Zafar, Isabel Valera, Gomez M Rodriguez, and Krishna P. Gummadi. 
“Fairness beyond disparate treatment & disparate impact: Learning classification without 
disparate mistreatment.” In proceedings of the 26th International Conference on World Wide 
Web, Perth, Australia, (Geneva: International World Wide Web Conference Committee, 
April 2017): 1171- 1180. 

P(A = 0) = P(A = 1)

Pr{Ŷ = 1 | A + 0, Y = 1} =  Pr{Ŷ = 1 | A = 1, Y = 1}}

Pp(A = 0, Y = y) = p(A = 1, Y = y, y

P(ŶA ← a (U) = y | X = x, A = a) = P(ŶA ← a’(U) = y | X = x, A = a

Table 3 — Mathematical Formulae for Algorithmic Fairness Approaches
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Demographic Parity
Demographic parity is the simplest of the widely known mitigation strategies for bias in ML. 
The approach is to establish a small collection of pre-defined groups and then require parity 
of some statistic of the outcome across these groups.26, 27

If demographic parity is applied to the solar lantern case, the process begins with an algo-
rithm that learns the relationship between loan defaults and employment gaps as before. 
However, with demographic parity, the ML algorithm is given access to the protected class 
label — in this case, gender. That label is used to modify the rejection rates based on gender 
until they are equal for men and women. The approach of demographic parity, as applied 
in this case, rejects some men who would otherwise have been accepted and accepts some 
women who otherwise would have been rejected  One solution is presented in Figure 8. In 
this case, 150 women are rejected and 150 men are also rejected.  

26. Faisal Kamiran and Toon Calders. “Classifying without discriminating.” In proceedings of 2009 2nd International 
Conference on Computer, Control and Communication, Karachi, Pakistan, (New York: IEEE, 2009): 1-6.
27. Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. “Fairness-aware Learning through Regularization Approach.” 
In 2011 11th IEEE International Conference on Data Mining Workshops (New York: IEEE, 2009): 643-650. http://dx.doi.
org/10.1109/ICDMW.2011.83

Figure 8 - Demographic parity for gender applied to solar lantern case 
The algorithm was altered to ensure that resulting rejection rates 

(here 150 out of 500) were equal for men and women.
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Among the problems that arise from implementing demographic parity is that it forces 
equality even when the data set is fundamentally unequal. Although demographic parity 
establishes a form of group fairness, it fails in some reasonable tests of individual fairness. 

For example, imagine that the people who had applied for access to solar lanterns became 
aware that employment history was a key variable being used in credit decisions. Across 
those with formal employment history, almost all of those who were rejected were men. So, 
an individual man whose loan application has been rejected and had formal employment in 
the past 7 months could argue that he was not treated fairly.

Demographic parity carries some long-term risk to those with the protected class labels if 
the approach is implemented poorly.  Consider, for example, if demographic parity were ap-
plied to equalize credit access for urban and rural loan applicants. If the long-term effect is 
that loan default rates among rural borrowers were elevated as compared to loan defaults 
among urban borrowers, then bankers might come to distrust rural loan applicants.  

Equalized Opportunity
Equalized opportunity is an approach to fairness in ML wherein the true positive rates are 
forced to be the same between the protected group and everyone else. This has the effect 

Figure 9 - Equalized opportunity applied to solar lantern case. The algorithm 
produces a similar, approximately 80% predicted repayment rate on  

loans granted to men (398 of 493) and women (127 of 158).
33
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Table 4 -  Terms for Describing Accuracy

NOTATION TERM NAME TERM MEANING

Y Outcome Variable The target, i.e. value we are trying to predict (actual 
value)

Ŷ Predicted Outcome The predicted target value using our model

A Protected Attribute A variable in the dataset which encodes a protected 
attribute

X Predictor Variable Any variable used in the model to predict the outcome, 
i.e. for n predictors our model is Y=f(X1,X2,…,Xn)

TP True Positive Y= Ŷ =1  correctly classified as positive

FP False Positive Y= 0; Ŷ =1  correctly classified as negative

TN True Negative Y= Ŷ =0  correctly classified as negative

FN False Negative Y = 1; Ŷ = 0 incorrectly classified as negative

TPR True Positive Rate TPR = TP/(TP+TN)

FPR False Positive Rate FPR = FP/(FP+TN)

ACC Accuracy ACC=(TP+TN)/(TP+TN+FP+FN)

34

MATHEMATICAL PRESENTATION OF EQUALIZED ODDS 

of providing social benefits to individuals of both groups at the same relative frequency and 
it also implies that risks and losses related to providing those benefits are more fairly distrib-
uted. To implement equalized opportunity, it is essential to begin with a substantial quantity 
of labeled historical data. That is, there must be an adequate data set enabling the true pos-
itive rates to be estimated and subsequently equalized.    

Whereas in demographic parity the predicted outcome is equalized across protected attri-
butes for the entire data set, in equalized opportunity the equality constraint is enforced 
only on subsets of the population with the positive value of the outcome.

To illustrate equalized opportunity, consider a proposed use of ML to support lending de-
cisions that enable solar lantern sales. Imagine a training data set that established which 
people actually repay their loans.  In the chart below, the proportions of women who lacked 
formal employment history and the proportions paying back the loans are the same as in the 
earlier example, however for the purpose of illustration the proportion of women applying 
for credit is different from that in the previous example. 

The “equalized opportunity” framework was used to establish the numbers of loans made to 
each of the four subgroups: men who had formal employment, men who lacked formal em-
ployment, women who had formal employment, and women who lacked formal employment. 
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The approach of equalized odds relies on having a training data set for which the out-
come Y is known with certainty. In Table 4 all values of the outcome variable Y and 
the associated values of its predictors X1,X2,…Xn are known, as are the values of the 
protected attribute A, i.e. in the training set (Y,X1,X2,…Xn,A) are known. 

The predicted outcome Ŷ is compared with the actual value of the outcome Y for the 
same values of (X1,X2,…Xn,A) to determine if there was a misclassification error. For 
a graphical representation, see the confusion matrix below. The accuracy of the algo-
rithm is defined in Table 4 and can be computed from the four cells of the confusion 
matrix. 

Enforcing a fairness criterion does come at the cost of accuracy, which is to be ex-
pected as a fairness criterion is an additional constraint (see Zafar et al 2018 in the 
Further Reading list on page 31 for examples of this trade-off).

Rather than equalize the predicted outcome across protected attributes for the en-
tire data set, equalized odds essentially forces the same equality constraint as demo-
graphic parity, but only for subsets with the same value of the outcome Y. Equalizing 
the odds means to equate the True Positive Rate and the False Positive Rate for dif-
ferent values of the protected attribute, such that the algorithm performs equally 
well across categories of the protected attribute (see Hardt et al. 2016 in the Further 
Reading list on page 31. 

Equalized odds expand the approach in equalized opportunity to being fair to both 
those with a positive outcome (in the loan repayment example, those who repay the 
loan) and to those with negative outcome (those who default). This expansion of fair-
ness criteria is justified if bias leads to unfairness through a false negative outcome 
(e.g. denying loans to people who would repay) in addition to unfairness through a 
false positive outcome (e.g. granting loans to people who will not repay).

Both criteria of equalized odds and 
equalized opportunity allow for a per-
fect predictor (where Ŷ = Y), whereas 
demographic parity does not (see 
Hardt et al 2016). Thus, if the goal is 
to achieve higher levels of fairness 
and optimize for accuracy, equal-
ized odds and equalized opportunity 
are better approaches than demo-
graphic parity. Relaxing the equal-
ized odds constraint to just the “ad-
vantaged group” – i.e. non-defaulters 
(Y = 1), yields the equalized opportu-
nity constraint, which is easier to sat-
isfy in practice than equalized odds.
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As stated previously, “equalized opportunity” requires that the true positive rate is the same 
between the men and the women. “Equalized opportunity” was accomplished in this case be-
cause 398 out of 493 men repaid, meaning that the probability of repayment given that the 
loan was made to a man was slightly over 80%.  Similarly, because 127 out of 158 women repaid, 
the probability of repayment given that the loan was made to a woman was slightly over 80%.  
Under this “equalized opportunity” scheme, the company chooses to accept similar risks in 
both applicant pools. From that perspective, the approach appears to be fair.

Equalized odds
Equalized odds (aka predictive value parity) is an approach to fairness in ML that is similar to 
equalized opportunity but places an additional constraint on the algorithm. In equalized odds, 
both the true positive rates and the false negative rates are equalized between the protected 
groups. Equalized odds most often drives the ML algorithm to sacrifice accuracy in order to 
satisfy additional criteria of fairness.

To understand the difference between equalized odds and equalized opportunity, consider 
the solar lanterns case. In the illustration of equalized opportunity, 7 men were not provided 
credit.  If any of these 7 men would have repaid, these instances would be considered false 
negatives. The false negative rate can be estimated because all of the men who were denied 
a loan lacked formal employment. In the training population of men with no formal employ-
ment, 2 of 7 paid the loan, meaning that the probability of payment given that the loan was 
denied to a man was about 28%.   

Figure 10 - Equalized odds applied to solar lantern example.  The false posi-
tive and false negative rates are both equal, but the default rates are high.
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In the illustration of equalized opportunity, 94 women were not provided credit. For any 
woman among them who would have repaid, this denial of credit is a false negative. That false 
negative rate can be estimated because 64 of the women who were denied a loan lacked for-
mal employment. In the whole population of women lacking formal employment, 50 of 200 
paid the loan, meaning that 16 of the women with no formal employment would have repaid. 
In addition, 78 of the women who were denied a loan had a history of formal employment in 
the past 7 months. In the whole population of women with formal employment, 250 of 300 
paid the loan, meaning that 65 of the women with formal employment would have repaid. 
Therefore (16+65) or 81 women who were denied loans would have repaid. The probability of 
payment given that the loan was denied to a woman was 81 out of 94 or about 86%.  

It can be argued that the equalized opportunity framework was not fair because it accepted 
an 86% chance of denying loans to women who would have repaid, whereas it accepted only 
a 28% chance of denying loans to men who would have repaid. 

How could the algorithm for determining provision of credit accomplish equalized odds in 
the case of the solar lanterns? Changes would have to be made in the numbers of people 
provided credit across each of the four subgroups: men who had a gap in employment, men 
who had no gap in employment, women who had a gap in employment, and women who had 
no gap in employment.     

The “equalized odds” framework was used to establish the numbers of loans made to each 
of the four subgroups: men who had a gap in employment, men who had no formal employ-
ment, women who had a gap in employment, and women who had no gap in employment.  As 
stated previously, “equalized odds” requires that the true positive rate is the same between 
the men and the women. This goal was accomplished in this case because 8 out of 14 men re-
paid, meaning that the probability of repayment given that the loan was made to a man was 
about 60%. Similarly, because 150 out of 250 women repaid, the probability of repayment 
given that the loan was made to a woman was also about 60%. The true positive rates have 
parity, so that seems fair.

Next, the false negative rates are reviewed.  In this illustration, 486 men were not provided 
credit.  Of these men denied a loan, none had a gap in employment. In the training population 
of men with no gap in employment, 398 of 493 paid the loan, meaning that the probability 
of payment given that the loan was not made to a man was about 80%. In the illustration of 
equalized odds, 1 woman was not provided credit and she had no gap in employment. In the 
training population, 250 out of 300 women with no gap in employment would have repaid the 
loan. The probability of payment given that the loan was denied to a woman was about 80%. 
The equalized odds framework was fair in the sense that it accepted an 80% chance of de-
nying loans to women who would have repaid and also accepted an 80% chance of denying 
loans to men who would have repaid.

However, there was a downside to the equalized odds approach as compared to the equal-
ized opportunity approach applied to this solar lantern case. Under equalized odds, there 
were 106 defaults out of 264 loans for a default rate of about 40%.  Under equalized oppor-
tunity, there were 126 defaults made out of 651 loans made for a default rate of about 20%. 
The equalized odds framework was fairer, but it was also far less accurate, and the cost was a 
doubling of the default rates on the loans.
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Counterfactual Fairness
Among the newer and more complex methods in ML is counterfactual fairness. In this ap-
proach two groups are guaranteed the same predicted outcome if the protected class status 
were different, all other things being equal — for example, if all the genders were switched.  
In this approach, data sets are altered to represent the counterfactual circumstance that an 
individual belongs to one group when, in fact, they actually belong to the other (but only in 
cases where the explanatory variables are equivalent). 

This algorithmic construct is the same as that of demographic parity except only under 
the quite challenging demands of a realistically constructed counterfactual scenario. 
Consequently, this approach requires a mapping of the causal relationships among variables, 
selection of exogenous variables, and regression analysis of those relationships. When a 
protected attribute is flipped to the counterfactual value, that change must be propagated 
to the other variables that are deemed causally dependent on the protected attribute that 
was changed, which is why the counterfactual analysis must precede implementation.  

It is challenging to work out, in realistic terms, what is meant by the counterfactual “had 
they been male instead of female.”  For example, opportunities for formal employment are 
causally connected to gender in many societies. So, to be fair, in the counterfactual fairness 
approach, an effort is made to sort out any plausible connections relevant to the decision.    

Consider using the counterfactual framework for the solar lantern case study.  For half of 
the loan applications made by men, the gender label is switched from “man” to “woman.”  
For any individual application in this group, because this application now comes from a 
woman, there is some probability that this newly created “counterfactual person” would 
have been denied an opportunity for formal employment. As a result, some fraction of the 
data elements for those men with the counterfactual gender label would have to be altered 
so that they lack formal employment history.  In the end, the decision algorithm has to treat 
men no differently whether they retain the original gender label or whether the label and 
associated data are altered. 

The causal relationships analyzed within counterfactual fairness are precisely what is ne-
glected in fairness-through-unawareness. The two approaches would give similar results if 
the causal structure were the same in both groups, but they rarely are. 

An important advantage of the approach of counterfactual fairness is that it appeals to a deep 
notion of what fairness requires. By directly addressing the causes of bias and inequality, coun-
terfactual fairness does a more thorough job of accounting for the systemic nature of biases 
that surround commonly protected attributes of gender, employment, race, and other factors.   

However, counterfactual fairness is an approach rather than a single, well-defined technique. 
The results depend critically on many implementation details. In practice, the counterfac-
tual fairness approach provides diagnostic tools rather than prescriptive solution methods.

Fairness Methodology 
This section proposes a methodology for choosing among the fairness criteria covered in the 
previous section. The methodology presented in Figure 12 is largely data-driven with a central 
role played by the protected attributes. To streamline the methodology, the questions asked 
of the implementation team are designed to be relatively few. A general discussion of how 
to apply this model is followed by an example of its application to the solar asset loan case.

38
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Figure 11 - Counterfactual fairness applied to solar lantern example.  Half of the men 
were reclassified as women in the data set, with conditions that applied to women 
(likelihood of formal employment) applied to those reclassified men. Doing so pro-

duces the same credit outcomes for the reclassified men as for the women.

As shown in Figure 12, if one is compelled to demonstrate statistical parity by law or by pol-
icy (e.g. hiring equal numbers of men and women), then demographic parity should be pur-
sued, but with a careful consideration of other fairness criteria as far as the law allows. It is 
likely that the demographic parity goal does not fully determine the machine learning im-
plementation. There will still be many choices to make and those can be informed by some 
of the more nuanced fairness frameworks and tools.

If demographic parity is not required, a question for the implementation team to address 
early on is whether there is a reasonable prospect of creating a causal model for the rele-
vant fair prediction scenarios. Fundamentally, any effort to design a system consistent with 
both individual and group fairness will have to address the reasons that bring about un-
fair outcomes. If that higher standard can be met within reasonable time and budget con-
straints, then the implementation team should attempt to pursue that avenue through the 
framework of counterfactual fairness.
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Figure 12 - Decision tree for selecting an appropriate fairness criterion

If a causal model is viewed as too complex or costly to build and validate, then some more 
frugal alternative can be pursued.  For example, the team could adopt demographic parity 
criteria. However, that step can lead to objections regarding individual fairness when pair-
wise comparisons are made between similar decision cases that differ only in the group 
membership and the outcome. The team therefore has to decide if the demographic parity 
approach is compelling for the stakeholders. 
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If there is not an adequately compelling case for demographic parity, then further alterna-
tives should be considered. A principal determination that should be made is whether pro-
tected attributes are independent of other features or predictors. However, most research 
and most experience from practice has shown such independence to be very unlikely: pro-
tected attributes are almost always correlated with other features in the data, for example 
gender with employment or socioeconomic status with residential district. In the rare case 
that this criterion is met, fairness through unawareness can be applied by simply removing 
the labels that indicate membership in the protected class. Vigilance should be exercised to 
ensure that outcomes are fair for the protected class. 

At this point in the flow chart in Figure 12, the team should determine if bias leads to unfair-
ness through a false negative outcome (e.g. denying loans to people who would repay) in 
addition to unfairness through a false positive outcome (e.g. granting loans to people who 
will not repay). If so, the team should apply the algorithmic criteria of fairness for equalized 
odds. However, this approach can significantly degrade the accuracy of the model; it should 
be established with a high degree of confidence that the negative outcomes have a large 
influence on fairness. If negative outcomes are not a significant concern — for example, if 
the priority is to grant loans to men and women with similar prospects of repayment but it is 
acceptable to deny loans to men and women with differing prospects of repayment — then 
the team should apply the algorithmic criteria for equalized opportunity. 

Applying the Fairness Methodology - Solar Lantern Example
Consider the solar lantern example. To simplify, imagine gender is the only protected attribute 
of interest (in practice, additional attributes would most likely be considered, such as age).

Is a demonstration of statistical parity required by law?

The process begins with checking to see if there is any legal framework that requires statis-
tical parity across protected variables. Assume that, in the country in which the intervention 
is being implemented, legal frameworks exist to prevent discrimination on the basis of gen-
der, but there are no specifications for if and how they apply to loans and microfinancing. 
Because the organization is not legally required to apply demographic parity, the answer is 
no and the organization can proceed with implementing another fairness method that may 
yield better results. 

Is there a reasonable prospect of creating a causal model?

Theoretically it may be possible to build a causal model to account for certain differences 
affecting women’s employment histories, such as having gaps in employment due to child-
birth. However, there are several other considerations for gender inequality that may affect 
the model. For example, there may be an education gap between men and women in the 
region of implementation, which may result in women having lower paying jobs. Additionally, 
in the region, women may also work informal jobs at higher rates than men, which may result 
in employment data variations. Building a causal model to account for these considerations 
may not be possible or may be prohibitively expensive. Therefore, the organization estab-
lishes that it is not a reasonable prospect to build such a model and proceeds to exploring 
other options.
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Is statistical parity compelling to stakeholders?

For the funders and key stakeholders, is there a clear benefit derived from attaining statisti-
cal parity? The decision to achieve statistical parity is often easier to communicate externally 
to funders, beneficiaries, governments, or other stakeholders because the motivation and 
process for employing a more complex fairness criteria may be challenging to understand. 
However, if statistical parity has detrimental impacts on populations that are traditionally dis-
advantaged, like women in financial inclusion, it may make sense for the organization to imple-
ment alternative fairness methods that are more favorable to the traditionally disadvantaged. 

Are protected attributes independent of other features?

The data from which the machine learning model is being built includes a variety of factors 
to determine credit-worthiness, but let us assume that they are all uncorrelated with gender.  
While this scenario may be unlikely, fairness through unawareness would be an admissible 
fairness strategy because these correlations could not cause the protected attribute to be 
inferred after it is removed from the dataset. 

Does bias lead to unfairness through a negative outcome in addition to unfairness through 
a positive outcome?

When answering this question, a key value judgment will be implicitly made about whose 
interests will take priority.  For this example, this question is asking whether it is sufficient 
to give loans to men expected to repay at the same rate as women expected to repay or 
whether the model also needs to ensure that men expected to default are denied loans 
at the same rate as women expected to default.  If the solar lantern company answers the 
question with “No,” this implies that the positive outcome (qualified applicants accessing 
loans) is more important to the stakeholders than the negative outcome (unqualified ap-
plicants being denied loans).  Before answering “no,” the company should be reasonably 
confident that bias does not lead to unfairness through a negative outcome and therefore 
the organization is justified in applying equalized opportunity. One additional layer of com-
plexity is that stakeholders may not necessarily have the same incentives when it comes to 
implementing fairness criteria or see the same cost for false positives and false negatives. 
For example, the lender might be more interested in reducing the number of loans improp-
erly approved (which would be actual defaults) whereas the applicants would be more inter-
ested in reducing the number of loans unfairly denied. 

The case study section provides another example of application of this Fairness Methodology 
and describes a real-world approach to mitigating bias in a health care intervention.

D. Deployment + Maintenance
This section covers important considerations in Steps 7 and 8: Deployment and Maintenance.

Documentation
Writing high-quality ML programs is good, but not sufficient. Organizations also need thor-
ough and well- written documentation of ML codes and data sets. 

This documentation can serve several main purposes: guiding the programming process, 
conveying information about training, aiding resolution of problems during use, and facili-
tating knowledge transfer to other developers. 

42
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ML documentation should cover the following topics, at a minimum:

 » When and by whom the ML program was developed

 » The purpose and intended users of the ML program, including specification of 
circumstances under which use is recommended and any cases for which use is 
discouraged

 » Requirements for hardware and environments on which the application will run

 » Essential facts about the data such as the origins of the training data, labeling proce-
dures, and provisions for data quality

 » Assumptions made by the development team

 » Algorithms employed and their limitations

 » Data collection methods including sampling strategies employed and assurances that 
sample sizes are adequate to the task yet efficient

 » Steps that have been taken to mitigate bias

Additionally, updates and revisions of the ML program should be documented in real time, 
if possible, or recorded immediately after they are made.

Testing
Before an ML system is put into use, there must be clear evidence that the system meets the 
requirements that the organization and the review committee have specified. 

While user testing is ideal and should be employed for the system’s most critical require-
ments, it can be costly. Simulation, analysis, and peer review can also be used to address less 
critical requirements.  To illustrate the distinction, consider an ML system that is designed 
to support the mental health of refugees.  The ways that the system responds to users that 
are having a disagreement with a friend might be checked by peer review.  The ways that 
the system responds to users that are experiencing suicidal ideation probably need to be 
validated through a realistic set of tests with actual users that are overseen by qualified psy-
chiatric staff.    

Prior to launching an ML system, the following steps must be completed:

1. Validate that the requirements of the ML system match the stakeholders’ needs. The re-
quirements must include considerations of fairness as discussed in this document.

2. Establish a testing plan to ensure that requirements are being met. The testing plan 
must be sufficiently detailed to ensure that inputs to the system have been described 
and the corresponding outputs are adequately characterized. 

 The testing plan must answer the questions: 

 » What kinds of input /output relationships would be evidence of bias? 

 » How will such bias be measured?

 » How will bias be addressed?

3. Complete and document the testing procedure. Record and resolve any anomalies ob-
served during the ML systems tests
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CITE emphasizes that even if the recommendations in this chapter are followed carefully, final checks on 
the outcomes are an essential part of an end-to-end development process. 

A system should not be assumed to be fair unless it has been demonstrated to be fair. The following 
methods can be used to evaluate fairness:

 » Targeted adversarial testing is known to be effective at identifying bad outcomes even for rela-
tively infrequent outputs. For this approach, an independent group challenges an organization to 
improve its effectiveness by assuming an adversarial role or point of view. In software develop-
ment, it is beneficial to organize a pool of trusted, diverse testers who can test the system in this 
way and incorporate a variety of adversarial inputs into unit tests. For example, in a credit lending 
application, the loan program should be subjected to adversarial testing by people who under-
stand how the credit system works, perhaps including people who were unfairly rejected for loans. 

 » Design testing metrics that are likely to reveal differences in outcomes across subgroups of users. 
False positive and false negative rates can be particularly helpful when applied across different 
user classifications.

 » Stress-test the system on difficult cases. Stress-testing refers to tests that run the model through 
extreme situations. The effectiveness and limitations of such methods have been demonstrated 
through their widespread use by financial regulators. A stress test, in financial terminology, is an 
analysis or simulation designed to determine the ability of a given financial instrument or financial 
institution to deal with an economic crisis. As an alternative to financial projection using averages 
or optimistic scenarios, a company or its regulators may do stress testing to determine how robust 
a financial instrument is during bleak scenarios like crashes. Similarly, ML developers should seek 
to identify particularly harmful or problematic circumstances and expose the system to these cir-
cumstances, perhaps via simulations. Such stress tests should be updated frequently to reflect the 
latest emerging challenges faced within a field.

 » Consider the possible effects of feedback loops within the ML system and within interconnected 
systems that combine with the ML system. In some cases, biases and unfair outcomes can be am-
plified over time due to such interconnections. For example, an employment matching ML system 
may send new prospects to certain companies that preferentially selected from one ethnic group 
because the company leadership was more comfortable interacting with people of that ethnic-
ity. That preference may be reinforced and legitimized when the ML system responds to and 
follows that established pattern.  This example highlights a negative consequence of feedback 
loops.  When such loops are implemented thoughtfully, they are more often beneficial.  Guidance 
on effective construction and use of digital feedback loops is available in USAID’s Guide to Digital 
Feedback Loops.  

METHODS TO EVALUATE FAIRNESS
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Accountability
As discussed in the ML implementation principles in Chapter 2, accountability is essential 
for responsible use of ML. Central to the concept of accountability is the requirement that 
people are being held accountable. This observation motivates the concept of a “sign-off” 
on all major decisions related to ML development programs in international development. 
A well-articulated formal process for sign-off approved by the review committee and involv-
ing documentation should be developed prior to any ML implementation. A sign-off need 
not be by a single person only, but in many cases one person would suffice. Related to the 
sign-off is an important question of availability. The responsible persons must be available to 
devote time and attention to the sign-off process.  In a USAID context, it's common to have 
a project supervised by a COR/AOR (Contracting or Agreement Officer's Representative) 
on the USAID side and a Chief of Party on the implementer side.  In many interventions in-
volving ML, CITE recommends that both of these individuals be involved in a sign off pro-
cess and that these individuals recognize that it is a major commitment to develop sufficient 
familiarity with the implementation details.  

In an international development context, strong institutional mechanisms for accountability 
are especially important. Because international development programs are often designed 
to assist the poorest and most vulnerable people, it is important to recognize that those tar-
geted by ML interventions in international development are also those least likely to have 
the resources and organizational power to seek redress when they are harmed. Poverty, in-
equality, and underrepresentation in governance can limit the ability of individuals and com-
munities to organize and advocate for countermeasures when interventions have negative 
consequences. Accountability mechanisms must be designed in such a way that the organi-
zation engages in self-monitoring and takes action to protect those affected by its programs 
when problems occur.  
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Chapter 5:  Conclusions
This chapter describes a set of recommendations that go beyond the development of ML 
models to include governance structures and broader practices that drive toward fair use 
of ML in development. 

Interested readers can find additional details and perspectives within Responsible AI Practices by Google 
AI and the website Principles for Digital Development. Further, the United States led the development of 
the OECD Recommendations on Artificial Intelligence, which includes principles for the responsible stew-
ardship of trustworthy AI. These principles consider issues like fairness, transparency, and accountability. 
The OECD is now developing implementation guidance to help move from these high-level principles to 
practice. The guidance, and other reference materials, will be posted on the OECD AI Policy Observatory. 
Some of the same recommendations made by these organizations are also promoted in this chapter.

RECOMMENDED RESOURCES

Human-Centered Design
CITE strongly advises that developers of machine learning systems employ a “human-cen-
tered” design approach. The International Organization for Standardization (ISO) defines 
human-centered design as: 

an approach to interactive systems development that aims to make systems usable 
and useful by focusing on the users, their needs and requirements, and by applying 
human factors/ergonomics, usability knowledge, and techniques.28

Specifically, CITE recommends that system designers:

 » Engage a diverse population of potential users of the system to develop the systems’ 
specifications. By ensuring that a wide variety of people have expressed their needs, 
organizations can avoid unintentionally designing the system for only a narrow sub-pop-
ulation. For example, an ML system for credit scoring would benefit from inputs from 
both urban and rural users who may have very different needs for loan products.

 » Employ a variety of different use-case scenarios. A use-case is a description of a set 
of interactions between a user (usually a human) and a software or ML system. By di-
versifying the use-cases employed in system design, organizations can make the sys-
tem fairer by respecting the ways that different people are likely to use the system.  For 
example, use cases for an employment-matching ML system could range from a large 
company launching a new factory to a service that supports many small companies. 

 » Disclose data collection. Users should be clearly informed about their choices and 
options with respect to how their data are used. When users are interacting with an 
ML-enabled application, ensure that disclosures are made at relevant times alerting 
the user that the user’s sensitive data is being collected and allowing the user to opt 
out when possible. This disclosure-and-decision principle helps enhance the transpar-

28. ISO. ISO 9241-210:2010 Ergonomics of human-system interaction — Part 210: Human-centred design for interactive 
systems. Geneva: ISO, 2010. 

46

https://ai.google/responsibilities/responsible-ai-practices/
https://digitalprinciples.org/


 MIT D-Lab | CITE - Exploring Fairness in Machine Learning for International Development

ency of the software’s process, and enables greater control by the user. For example, 
many web sites inform users when cookies will be used and some request consent for 
that type of data collection. The distinction between disclosure and consent should 
be emphasized and genuinely informed consent (thoroughly explained, understand-
able, and assessed) and is strongly preferred to a pro forma collection of a signature.

 » Favor user control over automation. Whenever possible, design the ML system to 
provide augmentation of a user’s capabilities and assistance of users in a task as op-
posed to automation of tasks. For example, rather than providing a single answer or 
suggested solution step to the user, provide a list of options instead. This advice has 
an important technical basis as studies have shown that the accuracy of a system’s 
predictions is often enhanced when that precision is defined over a set of answers 
rather than a single-point solution. For example, an ML system for supporting deci-
sions on which crops to plant should provide a list, such as five crops that are likely to 
thrive rather than just a single most highly-rated choice.  Subsequent evaluation of the 
ML tool will be more robust because a greater variety of crops would be in consider-
ation on the basis of the ML system’s recommendations. 

 » Prepare for potentially adverse (problematic) feedback early in the design of your 
software system. By explicitly recognizing and anticipating unintended outcomes and 
planning to mitigate their effects, a system becomes more fault tolerant. Live testing 
and feedback with even a small group of potential users can help to identify these ad-
verse feedback scenarios and validate the countermeasures against them. 

Implementing Fairness Strategies 
Chapter 3 introduced an 8-step overview of the process implementing machine learning 
solutions in international development and highlighted the potential for fairness consider-
ations to arise at each step. Figure 13 builds on the figure introduced in Chapter 3 to demon-
strate how and where different strategies for supporting fairness can be implemented 
during the ML project lifecycle. 

Figure 13 - Addressing fairness and bias throughout the ML process
47
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Initial considerations: Problem definition 
Teams should review the guiding principles discussed in Chapter 2 prior to implementing 
ML solutions in practice. When a team employs ML in an international development context, 
it is essential to ensure relevance of the ML effort. Relevant applications of ML have clear 
value to stakeholders and address the priorities of the impacted communities. If a simpler 
approach can solve the problem adequately and cost effectively, then ML should not be 
used. 

Prior to data collection, it is important to identify which variables in the data are protected 
attributes. As mentioned in Chapter 3, certain variables may be designated as protected at-
tributes by legal restrictions. However, in most cases in the international development con-
text, legal protections are not robust enough to provide protection for all groups that may 
be marginalized, and organizations will need to identify the appropriate variables to ensure 
fair outcomes. Chapter 1 delves into definitions of fairness in greater detail.

When ML is the chosen approach, organizations should form or draw on existing ethical 
review committees. These committees should comprise multiple individuals who work to-
gether to evaluate the ethical standing of all aspects of the ML use process. Ethical review 
committees can serve as a natural check-and-balance for ML, allowing humans and ma-
chines to work in concert. 

One imperative from the outset of a project is to ensure that the design and impacts of the 
ML system are communicated clearly to all stakeholders, particularly to those who will be 
affected by the ML-augmented intervention. Auditability and accountability are also espe-
cially important when ML systems affect people living in poverty. The technical profession-
als on the team should frequently ask how the model’s decision-making processes can be 
queried or monitored by external actors. The team’s leaders must ensure that someone will 
be responsible for responding to feedback and redressing harms, if necessary. These issues 
are discussed further in Chapter 2.

Phase 1: Review data
After choosing protected attributes, it is important to observe if any features are correlated 
with protected attributes before determining which fairness criterion is most appropriate to 
implement. Features that are highly correlated with protected attributes should be treated 
as protected attributes, and correlations in general may need special attention. Based on 
these correlations and other information about the problem, an appropriate fairness crite-
rion can be selected to implement fairness. Choosing among the various approaches avail-
able is a central task for the design team. Chapter 4 details the selection of these fairness 
criteria.

Curation, cleaning, and labeling of data is also central to the success of ML in general and 
is essential in an international development context. The technical professionals involved 
must evaluate representativeness of the data for its intended use. For example, using data 
from one region to train an ML system that is then deployed in another region can result in 
inaccurate and unreliable models. Identifying issues of representativeness and balance in 
datasets will often require domain expertise from international development professionals, 
as the ML implementing team may need additional, contextually relevant information.
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In most real-world cases, data will have gaps and errors and may not be ideally represen-
tative or balanced. Teams will need to determine if and how to overcome these challenges 
and making choices about balancing different tradeoffs. The preferred approach is always 
to gather a more diverse data set, However, this step may not be feasible due to high costs 
and long timelines. Other approaches to overcome limitations including data augmentation, 
resampling, and generation of synthetic data are discussed in Chapter 3. For example, in 
the data preprocessing stage, individuals should make adjustments that normalize preju-
diced historical data before the algorithm is formulated. 

Phase 2: Build model
The model building phase includes the creation, tuning, and evaluation of one or more ML 
models. ML implementers should pay special attention to the types of algorithms that are 
chosen in the model creation, particularly their strengths and weaknesses. Appropriate al-
gorithm choice can reduce the risk of bias and optimize for fairness considerations. Further 
discussion of bias and fairness considerations for specific algorithms can be found in the 
Appendix.

Phase 3: Integrate into practice
In the final phase, the results of the ML models are validated. Model outputs should rou-
tinely be checked for errors and biases. The results from these findings should be used to 
calibrate the classifier such that desired true positives, false positives, true negatives, and 
false negative rates are achieved and are not reflective of data biases.  

As time passes after the ML model is initially created, the likelihood increases that the model 
will become inaccurate. In international development, such changes affecting the accuracy 
of models commonly include population demographics; new taxes, subsidies, or govern-
ment policies; and introduction of technology. If underlying assumptions in building the 
model are no longer accurate, the model needs to be corrected. Reassessing the fairness 
of the ML solution should be part of a regular schedule, similar to maintaining the codebase 
of the ML implementation.

In addition to these technical considerations, organizations should implement initiatives that 
emphasize ethics and encourage human involvement throughout each stage of the use of 
ML outputs. Organizations can also conduct training seminars that educate employees on 
the strengths and weaknesses of different fairness algorithms or offer skill-building activi-
ties, such as role-playing exercises that teach individuals to evaluate the extent to which ML 
models are fair or discriminatory. 

Ethics in machine learning is a growing area of research, and fairness and bias are two 
important aspects of this larger field of discussion. ML implementers are encouraged 
not only to use this framework and guiding principles, but to also to keep up to date with 
newer techniques as they continue to emerge. The resources at fatconference.org, ainow-
institute.org, and ai.google/responsibilities are great starting points for further reading 
and reflection.
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Case Study: Machine Learning and Bias in 
Medical Diagnosis
This chapter offers a case study exploring a real-world 
approach to bias in machine learning. It focuses on a 
case involving diagnosis of pulmonary diseases in Pune, 
India that required exploration of bias with respect to 
gender and socio-economic status. The chapter first of-
fers some context for the case study by discussing some 
of the challenges with using machine learning in the 
medical field. Two brief examples are explored before 
presenting the detailed case study.  

A. Background on ML within Global 
Health Efforts  
In developing countries, a lack of electronic medical re-
cords has delayed the implementation of data science. 
In addition to a variety of domestic public and private 
health organizations, the health ministries in many de-
veloping countries also collaborate with a variety of in-
ternational organizations, such as the World Health 
Organization (WHO), which often create guidelines that 
are used by health personnel to diagnose and treat dis-
ease. Furthermore, the emerging and widespread use 
of mobile phones and mobile apps has begun to create 
new opportunities to apply data science and machine 
learning to the delivery of health care services in low-re-
source areas.

Due to high density of population and lack of infrastruc-
ture, a common  application of machine learning in global 
health screening for diseases, which is often performed by 
community health workers or by organizations that con-
duct specific health camps. In this application, the goal is 
to identify individuals who are at high risk of having a spe-
cific disease and then refer them to clinics in the health 
system to seek a diagnostic test and follow-up treatment.

In health facilities, machine learning is also being consid-
ered as a decision support tool for general-practitioner 
doctors or nurses. Future and emerging uses of machine 
learning include: automatic analysis of radiology images 
(e.g., X-Rays), automatic interpretation of genetic test-
ing, epidemiology, logistics and operation of medical 
supplies or personnel.
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Challenges of Health and Biomedical Data
The use of health and biomedical data involves a number 
of challenges and considerations, discussed below. 

Human impact of decisions
Decisions regarding health can have a significant impact 
on individuals and their loved ones. Many aspects of 
health affect well-being, mobility, and the ability to work 
and care for oneself and others — and certain medical 
decisions can have drastic consequences. Errors that 
lead to misdiagnosis or incorrect treatment can be cata-
strophic for patients, and can also impact the reputation 
and future viability of outreach efforts and clinics.

Privacy and legal concerns
Individuals’ health and biomedical data are particularly 
sensitive due to their intimate and personal nature. This 
type of data is often tightly protected by local govern-
ment regulations. In the United States, for example, pa-
tient data systems are regulated by specific regulations 
and standards, such as the Health Insurance Portability 
and Accountability Act (HIPAA). Such regulations also 
exist in many developing countries and this landscape 
is changing rapidly with emerging regulatory and data 
privacy frameworks such as India’s Digital Information 
Security in Healthcare Act (DISHA). Such regulations of-
ten have mandates that concern the anonymity of the 
data as well as the storage, use, and handling of medical 
data. These constraints add additional complexity to any 
machine learning project, and can also affect how the 
data can be used.

Complexity of disease and diagnostic models
The cause and etiology of disease is often complex. Risk 
factors of diseases may be numerous and are not always 
known. Genetics, behavior, and environment can con-
spire with other factors to determine an individual’s dis-
ease risk. As a result, the data used for building machine 
learning models for disease and diagnostics models are 
often incomplete or non-exhaustive, which can lead to 
surprising or erroneous results.
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While it is often necessary to simplify a machine learning 
model to create binary features, (e.g. smoking = yes/no, 
breathlessness = yes/no, stress = yes/no), it is important 
to keep in mind that the field of medicine is very much 
an analog science with continuous variables. Many dis-
eases, both infectious and non-communicable, (e.g. ma-
laria, pneumonia, asthma) have varying levels of severity, 
which introduces a degree of variability into the model 
(if all severities are treated equally).

Difficulty of labelling data accurately
In developing a machine learning model, the process of 
supervised learning requires training data.  This train-
ing data requires additional effort on the part of doctors 
and clinical staff to manually label the data.  While some 
labelling can be accomplished by a simple diagnostic 
lab test (to confirm YES/NO if the patient has tubercu-
losis for example), other types of labelling are subjective 
and rely on the doctors interpretation and experience. 
For example, some doctors listening to a lunch sound 
might interpret the sound as a wheeze and some may 
not. The subjective nature of certain data labelling tasks 
is important to keep in mind when deciding if a specific 
problem is appropriate for machine learning analysis. 

Genetic predispositions
While it is hoped that diagnostic algorithms and machine 
learning could be applied fairly and equally to people of 
all racial and ethnic groups, this ideal is complicated by 
the fact that there exist significant disparities in the prev-
alence of certain diseases among different racial and eth-
nic groups (e.g. cardiovascular disease in the South Asian 
population or type 2 diabetes in the African-American 
population). There are also significant physiological vari-
ations across racial and ethnic groups. For example, the 
South Asian population has smaller lung capacity than 
Caucasian European population. Knowing this, it is pos-
sible to see why a given algorithm may produce different 
results for different groups, with different rates of false 
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positives and false negatives in each group. As medi-
cal applications such as pharmacological therapies and 
cancer treatments are becoming more personalized, it 
is likely that machine learning algorithms will eventually 
need to be tailored and personalized as well.

Interpretability
Given that health outcomes and disease can be critically 
dependent on factors of race, ethnicity, and demograph-
ics, in these cases, it is generally important to employ ma-
chine learning models that can be interpreted, so doctors 
can make a better connection between specific risk fac-
tors and disease. For this reason, opaque algorithms, such 
as neural networks, are particularly problematic when ap-
plied to disease prediction. However, at the same time, 
opaque algorithms such as convolutional neural networks 
(CNNs) can provide very good performance for specific 
biomedical tasks, such as automatic image segmentation 
and cancer tumor detection in X-ray images.

Because of these challenges, health and biomedical 
data is a risky domain in which to apply ML. However, 
growing populations in developing areas and increasing 
health costs are driving the exploration and adoption of 
machine learning to all levels of health care systems in 
international development. 

Brief Examples of Bias Considerations in ML 
Health Applications 
The ethical questions around ML can be subtle and de-
pend on individual perspectives and beliefs. However, 
examples can also illustrate common themes such as us-
ing appropriate proxies and ensuring that training data 
is relevant to the patient population.

Example #1: Hospital Admission for pneumonia 
patient
One famous example of machine learning applied to hos-
pital patient admission was published by Caruna [2015].29 
This example involved a study in the 1990s to use a com-

29. Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noémie Elhadad. “Intelligible models for healthcare: Predicting pneumonia 
risk and hospi∃tal 30-day readmission.” Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New 
York: Association for Computing Machinery, 2015): 1721-1730. https://doi.org/10.1145/2783258.2788613 
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puter algorithm to decide which pneumonia patients 
should be hospitalized and which should be sent home 
for outpatient care. The original algorithm predicted the 
30-day probability of death for each patient; those with 
a higher probability of death would be admitted to the 
hospital.

Unfortunately, the results of the algorithm were prob-
lematic. The computer algorithm determined that pa-
tients with other respiratory ailments and co-morbid-
ities — such as asthma, chronic obstructive pulmonary 
disease, or chest pain — had a lower probability of dying 
and that, therefore, these patients should not be admit-
ted to the hospital. Reanalysis of the data revealed that 
arriving pneumonia patients with respiratory ailments 
do indeed have a lower probability of death, and the ex-
planation was that these groups of patients sought med-
ical care sooner and thus had a lower severity of pneu-
monia infection and thus a lower probability of dying. 
But this reasoning ignored the fact that such patients 
are also more vulnerable in terms of potential complica-
tions. This risk was not considered.

From this example, we can see that the problem was not 
the algorithm per se, but rather the design of the algo-
rithm and the specific question that the algorithm was 
asking. While the probability of death would be a very 
reasonable question to consider for a health insurance 
company, it was perhaps the wrong question to ask in 
this context. What the hospital really wanted to know was 
the probability that the patient would develop compli-
cations, and “death within 30 days” was used as a proxy 
for that measure. However, that proxy was affected by 
things other than the variable of interest (i.e. developing 
complications), such as the patient’s awareness of having 
co-morbidities. A better question to ask might be about 
the severity of the infection and, based on the severity 
and risk factors such as age and co-morbidities, the al-
gorithm could then recommend which patient should be 
admitted to the hospital. The available patient data, such 
as the level of fever (temperature) and comorbid respira-

Another well-known machine learning bias ex-
ample, publicized by Joy Buolamwini [2017],30 
concerns the performance of facial analysis algo-
rithms when applied to people of different skin 
colors. Facial analysis models for automatic gen-
der classification created by IBM and Microsoft 
were shown to perform surprisingly poorly (accu-
racy < 40%) when tested on dark-skinned women. 
Because the machine vision features that such 
computer algorithms use to analyze a human face 
are dependent on the levels of pixel contrast and 
average brightness, such algorithms are critically 
dependent on skin color and lighting. If the facial 
analysis algorithm is not trained using dark-skinned 
faces, it is perhaps not surprising that the algo-
rithm will perform very poorly when presented 
with a dark-skinned face.  Fortunately, there have 
been improvements in some of the commercially 
available face recognition algorithms subsequent 
to the public release of the research results ex-
posing bias.31

RACIAL BIAS IN FACIAL ANALYSIS
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30. Joy Buolamwini. “Gender Shades: Intersectional Phenotypic and Demographic Evaluation of Face Datasets and Gender Classifiers” PhD diss., (MIT, 
2017). http://hdl.handle.net/1721.1/114068
31. Inioluwa Deborah Raji and Joy Buolamwini. “Actionable Auditing: Investigating the Impact of Publicly Naming Biased Performance Results of Com-
mercial AI Products.” In proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (Palo Alto, CA: Association for the Advancement of 
Artificial Intelligence, 2019): 429-435. https://doi.org/10.1145/3306618.3314244.
32. Richard Ribon Fletcher, Olasubomi Olubeko, Harsh Sonthalia, Fredrick Kateera, Theoneste Nkurunziza, Joanna L Ashby, Robert Riviello, and Beth-
any Hedt-Gauthier. “Application of Machine Learning to Prediction of Surgical Site Infection.” In proceedings of 2019 41st Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC) (New York: IEEE, 2019): 2234-2237.  https://doi.org/10.1109/EMBC.2019.8857942. 

tory ailments, could have been used to predict the level 
of infection severity and risk of complications, but this was 
not done.

This example reveals not only the need for proper al-
gorithm design, but the importance of including people 
with domain knowledge in the algorithm design process. 
Consultation with a range of people with experience in 
the context of interest — such as pulmonologists, emer-

Example #2: Predicting Wound Infection from 
Photographs
Fletcher et al. (2019)32  published a study showing how 
a computer algorithm could predict the infection of a 
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the algorithm to perform equally well if tested with light-
er-skinned women — from Ethiopia or Europe, for ex-
ample. The use of this algorithm is acceptable if it is re-
stricted to the domain on which it was trained, which 
was rural Rwanda; but it would be technically and ethi-
cally wrong to present this algorithm as a general solu-
tion for infection prediction in all racial groups.

This example not only reveals the specificity of machine 
learning algorithms, which are trained to reflect particu-
lar data sets, but also underscores the need for domain 
knowledge, transparency, and oversight to ensure these 
algorithms are applied appropriately. Just like the facial 

Figure 14 - (left) Community health worker capturing an image of a surgical wound. Figure 15 - (right) The top row contains 
sample images from infected wounds, and bottom row are sample images.

analysis algorithms studied by Buolamwini (see side-
bar), color-based algorithms can be expected to per-
form poorly when applied to patients with a different 
skin color. 
It is important to understand that tailoring an algorithm 
to a particular patient group is not in itself a problem. 
Problems occur when algorithms are oversold in terms 
of their capabilities, applied beyond the bounds of ap-

surgical wound very accurately using only a color pho-
tograph of the wound (Figure 15). This study involved 
approximately 500 patients from rural Rwanda who 
had given birth through Cesarean section. The photo-
graphs were taken by the community health workers 
10 days post-surgery. Although the infection prediction 
algorithm performed extremely well when tested on 
Rwandan women, it would be unreasonable to expect 

propriate use, or employed without an understanding of 
how the algorithm arrives at its decisions.

With this background in mind, the chapter now turns to 
the detailed case study.

B. Case Study: Exploration of Bias in 
Health Diagnostic Data  
Building on the previous discussion of applying machine 
learning in a global health context, this section illustrates 
some ways that a health diagnostic model can be exam-
ined for bias, and also demonstrates some of the inher-
ent difficulties in working with health data.
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Clinical Study Description
The data used for this example is in the domain of pul-
monary disease and was collected as part of a diagnos-
tic prediction study conducted by MIT and the Chest 
Research Foundation in Pune, India. 

The purpose of the study was to create a simple diagnos-
tic algorithm that could accurately detect the presence 
of three different pulmonary diseases — asthma, chronic 
obstructive pulmonary disease (COPD), and allergic rhi-
nitis (AR) — as well as combinations of these diseases. 

320 subjects, including healthy controls, were tested us-
ing a mobile phone diagnostic kit that included a simple 
questionnaire and a peak flow meter.

The total numbers of patients presenting with the pul-
monary diseases and combinations were as follows:

Efforts were made to recruit equal numbers of women 
and men, resulting in 171 male and 132 female patients.

In order to provide labels and training data for the ma-
chine learning algorithm, every subject in the study was 
also administered a complete battery of pulmonary 
function tests, which included spirometry, body plethys-
mography, impulse oscillometry, and lung gas diffusion 
testing. Based upon these tests, an informed diagnosis 
was given by an experienced chest physician.

Applying the Fairness Methodology
To determine an algorithmic approach to fairness, the 
Fairness Methodology from Chapter 4 was applied (see 
page 25). 

Is a demonstration of statistical parity required by law?

Beginning with the first question in the framework, 
demonstration of statistical parity was not required by 
law — in this case the goal was not to diagnose the same 
rates of illness across groups but rather to diagnose 
across groups with the same accuracy. 

Is there a reasonable prospect of creating a causal 
model?
As the discussion will illustrate, smoking emerged as a 
likely causal factor, but because there were no women 
smokers, it was clear that smoking could not be the only 
cause. Because there remain myriad unknown influ-
ences on pulmonary health, the answer to this question 
was also no. 

Is statistical parity compelling to stakeholders?

Again, it is not in this case, because the goal is not to di-
agnose the same number of cases across the different 
groups but rather to ensure that all groups are receiving 
accurate diagnoses. 

Are protected attributes independent of other features?

In this case the question is whether gender and socio-
economic status are functionally tied to other features 
in the data set. As the discussion below illustrates, these 
protected attributes are in fact tied to behavioral differ-
ences (smoking). 

Does bias leads to unfairness through a negative out-
come in addition to unfairness through a positive 
outcome?

In this case, the concern is both with false negatives 
(missed diagnoses) and false positive diagnoses, which 
would misallocate scarce medical resources. The meth-
odology therefore calls for equalized odds. 

In practice, this was achieved by separating the data sets 
according to the different gender and socio-economic 
status (SES) classes and creating independent models 
for men and women and for low and high SES groups.  

Algorithm Development 
A machine learning algorithm was created using logis-
tic regression, which is highly interpretable. This type 
of machine learning model was chosen because the pa-
rameters generated by logistic regression enables the 
analyst to conduct coefficient analysis and subsequent 
bias analysis. (See the Appendix for a discussion of dif-
ferent algorithms and their benefits and drawbacks with 
respect to bias.)  

A separate model was created for each disease (asthma, 
COPD, and AR). Because some patients had comorbid 
conditions (e.g. asthma+AR or COPD+AR), the training 
data for each model included only patients that had a 
single disease rather than a combination (e.g. Asthma 
only, COPD only, and AR only). This training methodol-
ogy produced the highest accuracy.

For model development, approximately 75% of the data 
was used for training and 25% of the data was reserved 
for testing. The median area-under-the-curve (AUC) ac-
curacy of the three models (COPD, asthma, AR) was 
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85%, 75%, and 95%, respectively. This AUC measure 
provides a summary of the discrimination ability of the 
model across the entire range of inputs.

Bias Analysis – General Considerations
For the purpose of bias analysis, the goal was to exam-
ine if a given algorithm would favor or penalize members 
with a certain protected attribute, such as race or gen-
der. The question posed was: 

Is there a significant difference in prediction accuracy 
between specific subgroups?

In order to explore this question, it is important to note 
some general observations about machine learning:

 » The accuracy of an algorithm will generally de-
pend on the size of the test set as well as the ho-
mogeneity and variance of the data in the test set.

 » In general, the accuracy of a machine learning 
model will improve with an increasing amount of 
training data. However, there is a point of diminish-
ing returns.

 » The amount of training data needed to achieve the 
optimum level of accuracy also depends on the 
quality of the training data. If the quality of train-
ing data is poor, and the data contains a great deal 
of noise or random variability, the inferences that 
can be drawn from the data will also be weak, so a 
greater amount of data may be required. In gen-
eral, quality is more important than quantity.

In terms of the mechanics of machine learning, it is also 
important to note that because there is some variability 
in health data, it is common practice to run many iter-
ations of the same model, each time changing the pa-
tients that belong to the test set and the training set. 
After many iterations, the median values are incorpo-
rated into the model. With logistic regression, the me-
dian value of the coefficients may be used. The number 
of iterations required depends on the amount of vari-
ability in the model.  

In this case of pulmonary diseases in India, running 
1000 iterations of the model produced a sufficiently low 

Figure 16 - Data partitions used for gender bias analysis.  The size of the test set and the size 
of the training set were kept constant, but the proportion of males and females was varied in 
the training set. 
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variance that enabled comparison across models. This 
process illustrates that even though algorithms such as 
logistic regression are deterministic (determined by the 

Figure 17 - Plots of AUC Accuracy (left) and InterQuartile range (right) results of gender bias analysis for three different dis-
ease diagnostic models: (top) COPD; (middle) Asthma; and (bottom) Allergic Rhinitis (AR).  Results are shown for different 
proportions of males vs females in the training set. The horizontal axis represents the proportion of males in the training set.

parameter values and initial conditions), there is a sto-
chastic (random) component to model development, 
because the members of the training set and test set 
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are selected at random. Thus, it is important to measure 
variations in the model accuracy across different itera-
tions of the model.

For smaller data sets (N< 250), the method of leave-one-
out cross-validation is sometimes used, which leaves out 
only one data point from the training set and uses it for 
prediction. However, for larger data sets, it is preferable 
to separate the data into training and test data and use 
a held-out test set for analysis that is never mixed with 
the training set.

Gender Bias Analysis – Methodology
In order to explore possible gender bias in the algo-
rithm, the algorithm accuracy was separately tested on 
male and female patients and the results compared. In 
order to examine how sensitive the algorithm was to dif-
ferences in gender, different models were created that 
were trained on different proportions of male and fe-
male patients.

In order to conduct this analysis, a pool of 160 patients 
were defined to be used as the test set. The size of this 
test set was kept fixed and was equally divided between 
male (N=80) and female (N=80) patients. The remain-
ing 143 patients (91 males, 52 females) were used as a 
general pool from which to select training data. The 
data partitioning used for this bias analysis is illustrated 
graphically in Figure 16.

In order to see how the algorithm depends on gender, 
four different data sets were defined, each with a size 
of N=104, but with each having a different proportion of 
males and females:  50% female, 37.5% female, 25% fe-
male, and 12.5% female. For each iteration of the model, 
a different set of patients would be randomly selected to 
be part of the N=104 test set. One thousand iterations of 
the model were calculated.

To maintain consistent results, a held-out test set was 
used: the patients in the test set were isolated from the 
rest of the data throughout all our analysis and were 
never mixed with members of the training set.

Gender Bias Analysis – Results
The results of the gender bias analysis are shown in 
Figure 17 for each of the three pulmonary diseases stud-
ied (asthma, COPD, and AR). The accuracy as defined by 
the ROC AUC is given as well as the variation expressed 

as Interquartile Range (IQR), a pair of values for the pa-
rameter covering from the 25th percentile to the 75th 
percentile of the observed distribution.

From the plots, it is clear that the accuracy of all three 
models does not change significantly as a function of 
the proportion of women in the training set. This indi-
cates that sampling bias is not a significant concern for 
these diseases.

However, the results do show that there is a systematic 
diagnostic gender bias between males and females for 
COPD, and a small systematic bias for AR. For asthma the 
model performs equally well for male and female patients.

The plots of IQR reveal that there is significant variability 
in the COPD and Asthma patients, with the female pa-
tients having the highest variability for COPD and the 
male patients having the highest variability for asthma. 
For AR, there was low variability for both males and 
females.

Gender Bias Analysis – Discussion
Although the machine learning model exhibited minimal 
gender bias for asthma and AR, a significant diagnostic 
bias is noted for COPD. Because this bias persists even 
when the training data is equally divided among male 
and female patients, it is clear that this disparity is not 
due to sampling bias in the training data. 

What, then, is the cause of this bias?
In order to examine this question further, various risk fac-
tors for COPD were explored to examine which factors 
may be dependent on gender. It is well-known that one of 
the greatest risk factors for COPD is smoking cigarettes 
(a cause of emphysema that contributes to COPD). This 
observation was also confirmed by performing a coeffi-
cient analysis on the logistic regression model and seeing 
the coefficient value of the smoking variable.

By examining the proportion of male and female pa-
tients in the study that smoke cigarettes, a large dif-
ference was observed between genders. As shown in 
Figure 18, all of the smokers are male and none of the 
female patients are smokers. From this observation, it 
can be hypothesized that the gender bias in the algo-
rithm is due to the large disparity in the smoking status 
between men and women. Other features did not show 
any significant gender disparity.
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The smoking data also help explain why the model ac-
curacy is higher for women compared to men. Because 
none of the female patients smoke cigarettes, there is 
less variance in the female patient population, and thus 
the model is better able to predict COPD and achieve 
a higher accuracy. However, among the male patients, 
approximately 45% of the male patients smoke and 55% 
do not, which creates significant variability in the results. 
Thus, the accuracy for male patients is lower.

Based on this analysis, one can also speculate that it may 
be possible to achieve higher accuracies in the COPD 
model if the data were stratified by smoking status. For 
example, it would be possible to create a separate model 
for smokers and for non-smokers. The resulting models 
should not only have higher accuracies but also exhibit 
less bias across genders.

Socioeconomic Status Bias Analysis – 
Methodology
In order to explore potential socio-economic bias, a sim-
ilar methodology was used to partition the data and iso-

58

Figure 18 - The number of smokers and non-smokers in each gender group.

late socioeconomic status (SES) as a variable.

Similar to the gender bias example, a pool of 58 patients 
was defined to be used as the test set. This test set was 
equally divided between male (N=29) and female (N=29) 
patients. The remaining 245 patients — 175 high income 
(high SES), 70 low income (low SES) — were used as a 
general pool from which to select training data.

In order to see how the algorithm depends on SES, four 
different data sets were defined, each with a size of 
N=140, but with each having a different proportion of low 
SES and high SES:  50% low SES, 37.5% low SES, 25% low 
SES, and 12.5% low- SES. For each iteration of the model, 
a different set of patients would be randomly selected to 
be part of the N=140 test set. One thousand iterations of 
models were computed and the median was taken.

In order to maintain consistent results, a held-out test 
set was used, keeping patients in the test set the same 
throughout all our analysis. 
The data partitioning used for the bias analysis is illustrated 
graphically in Figure 19.
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Figure 19 - Data partitions used for gender bias analysis. The size of the test set and the size of the train-
ing set were kept constant, but the proportion of males and females was varied in the training set. 

Socio-Economic Status (SES) Bias Analysis – 
Results
The results of the SES bias analysis are shown in Figure 
20 for each of the three pulmonary diseases studied 
(asthma, COPD, and AR). The figure shows the accuracy, 
in terms of ROC AUC, as well as the variation in the ac-
curacy expressed as the Interquartile Range (IQR).33

For all three disease models, the accuracy remains fairly 
consistent as the proportion of low-SES patients is var-
ied. In the variability analysis, however, the IQR value for 
allergic rhinitis (AR) increases significantly as the pro-
portion of low-SES patients is reduced. 

Socio-Economic Status (SES) Bias Analysis – 
Discussion
Based on these results, it is clear that for COPD and 
Asthma, there is little sampling bias present in these 

models, in terms of SES. In other words, the proportion 
of low-SES patients in the training data has little effect 
on the accuracy and variability of the model.

In the model for AR, however, the accuracy of the model 
degrades significantly as the proportion of low-SES pa-
tients is reduced, which indicates that there are some 
SES-dependent features that contribute to the model. 
In this case, the model for AR does appear to be very 
sensitive to sampling bias. Unless low-SES patients are 
included in the training data, the variability of the AR 
model will be unacceptably high for low-SES patients. 
There is little systematic diagnostic bias between low-
SES and high-SES patients, so the same model can be 
used for both groups; however, in order to maintain low 
variability in the performance, it is important to include 
equal proportions of low-SES and high-SES patients in 
the training data.

33. Variance is not generally used because this error does not have a normal (Gaussian) distribution.
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Figure 20 - Plots of AUC Accuracy (left) and InterQuartile Range (right) results of Socio-economic (SES) bias 
analysis for three different disease diagnostic models: (top) COPD; (middle) Asthma; and (bottom) Allergic 
Rhinitis (AR).  Results are shown for different proportions of high vs low SES in the training set. The horizontal 
axis represents the proportion of high SES patients in the training set.
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In terms of systematic diagnostic bias, there is little dis-
parity in diagnostic accuracy between the high-SES 
and low-SES groups. However, for COPD, some small 
amount of disparity can be observed. In order to explore 
this further, we can once again examine which features 
in the model may have a disparity across SES groups.

As with the gender bias analysis, it is clear from the logis-
tic regression coefficient analysis that cigarette smoking 
is a feature with high predictive value. Figure 21 shows 
the number of high-SES and low-SES patients that 
smoke cigarettes. From these data, it is clear that the 
high-SES group comprises predominantly non-smokers, 
whereas the low-SES group is roughly evenly divided 
between smokers and non-smokers. Based on this ob-
servation, it can be hypothesized that the small disparity 
in the accuracy between high-SES and low-SES patients 
is primarily due to the disparity in the smoking preva-
lence among these patients’ groups.

As with the case of the female patients in the gender 
bias analysis, the COPD model produces a higher ac-
curacy among high-SES patients, mostly likely because 
these patients are more homogeneous.

Summary
In addition to demonstrating how a bias analysis may be 
conducted in a real-world machine learning application, 

this case study presents and highlights some important 
considerations that should be examined whenever ma-
chine learning is being applied to health care. Key con-
siderations include:

 » Health and disease are complex, analog processes 
with many risk factors, often including hidden vari-
ables. Machine learning analysis generally requires 
creating crude approximations to these processes, 
which must be done carefully and with the proper 
domain expertise, in order to avoid introducing er-
rors and false conclusions.

 » The domain of health can reflect genetic, environ-
mental, and behavioral differences across different 
genders, racial or ethnic groups, and socio-eco-
nomic classes that affect disease prevalence and 
present additional challenges for ensuring fair-
ness. If it is revealed that a particular algorithm 
consistently produces very different results for 
one patient group vs another, it is generally best 
to design a separate algorithm for each group 
rather than try to create a universal algorithm that 
will very likely perform poorly on both groups. 
Alternatively, a more complex and flexible model 
(such as random forests) might have more ability to 
“act like” different models in different situations, at 
the cost of requiring more training data.

Figure 21 - The number of smokers and non-smokers in each gender group.
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Appendix:  
Fairness and Bias Considerations for 
Specific ML techniques 
For readers interested in more detailed computer-sci-
ence based exploration of fairness and bias, this ap-
pendix serves as an overview of specific ML techniques 
highlighting fairness and bias considerations for each 
approach.  

Regression Analysis
Fairness and bias considerations: There is significant risk 
of bias and unfairness when regression analysis is used 
in the analysis of socially relevant data. Although the for-
mulae provided in this section provide unique solutions 
for the estimators given a particular form of model, the 
choice of a model has a first order impact on the con-
clusion drawn in a study. The analyst must exercise vigi-
lance to ensure that the variables included in a regression 
analysis, the variables excluded from a regression analy-
sis, and the form of the model are not reinforcing some 
preconception of the phenomena. Methods like “best 
subsets” regression can be used as a countermeasure to 
make results more dependent on explicitly selected sta-
tistical criteria and less dependent on unstated prefer-
ences of the data analyst. 

Overview of technique: Regression analysis is a statisti-
cal technique for describing and exploring data. Its pur-
pose is to model the effect of continuous valued inde-
pendent variables on a continuous valued dependent 
variable. While regression analysis is not itself a Machine 
Learning algorithm, it is an essential ingredient in many 
Machine Learning procedures, so it is useful to review it 
here. 

To begin this introduction, it is most convenient to start 
with “simple linear regression” in which we have just one 
independent variable and we seek to examine a linear re-
lationship with the dependent variable. To formalize the 
concept, we use a regression equation 

 » Regression Analysis
 » Principal Component Analysis (PCA)
 » Linear Discriminant Analysis (LDA)
 » Quadratic Discriminant Analysis (QDA)
 » K Nearest Neighbors (k-NN)
 » Receiver Operating Characteristic   
 (ROC) curves
 » K Means Clustering
 » Hierarchical clustering
 » Density Based Clustering (DBSCAN)
 » Support Vector Machines
 » Classification and Regression Trees   
 (CART)
 » Naïve Bayes Classifiers
 » Random Forests
 » Artificial Neural Networks (ANN) 

TECHNIQUES DISCUSSED 
IN THIS APPENDIX

where Y is the dependent variable and x is the indepen-
dent variable. In this equation,  and   are the slope and 
intercept of a proposed line that is meant to approximate 
the relationship between x and Y. The term e represents 
the error or the deviation between the proposed line and 
each data point.

Y = β̂o + β̂1x + ε
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The Figure A1 illustrates an example of simple linear re-
gression. The blue ‘+’ symbols represent data. The values 
plotted on the abscissa (aka x-axis) are the values of an 
independent variable. The values plotted on the ordinate 
(aka y-axis) are the values of the dependent variable. The 
red line is the regression model. The red circles repre-
sent predictions of the regression model and the verti-
cal distance from each blue ‘+’ symbol and each red circle 
represents error. 

A key fact to understand about simple linear regression 
is that there is a unique solution that minimizes the sum 
squared error. In simple linear regression, the solution is 
a pair of values β̂ 0 and  β̂ 1 and this pair of values makes 
the following sum as small as possible:  

The concept of “simple” linear regression with one inde-
pendent variable extends naturally to multiple indepen-
dent variables. The same procedure is sometimes called 
“multiple regression” to emphasize the contrast with “sim-
ple” linear regression. The linear regression equation is:

The sort of analysis using this equation as a model is usually 
called just “linear regression” because the analysis still as-
sumes a linear superposition of multiple effects. As a result, 
the system of equations is linear in the model parameters 
b. When this linear form is used, we can conceptualize the 
regression model as a plane that is optimally fit to the data. 
If there are two independent variables, the plane is visual-
ized as a three-dimensional space as shown in Figure A2.

  Y = Xβ̂+ε

Figure A1

Figure A2
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Figure A3

If we include a constant term in the regression then there 
is conventionally a set of 1’s in the left-hand column of 
the model matrix X. In statistics, the constant term is de-
noted β̂ 0 and the other coefficients go up from there β̂ 1, 
β̂ 2 and so on up to β̂ k. The length of vectors Y and e 
is n which is the number of data points. The length of 
β̂ is p=k+1  where p is the number of “predictors” and k is 
the number of “independent variables” in the regression 
equation. Consistency of the matrix equation requires a 
“model matrix” X that is n by p=k+1. You might say one of 
the “predictors” is a degenerate sort related to predict-
ing the value of the dependent variable given all the in-
dependent variables take the value of zero.

There is a closed-form solution to the problem of mini-
mizing sum squared error in solution of a system of linear 
equations. A least-squares fit is provided by: 

Principal Component Analysis (PCA)
Fairness and Bias considerations: The results of Principal 
Components Analysis (PCA) are combinations of factors 
that enable an outcome to be explained with a small num-
ber of combinations rather than a long list of separate 
factors. PCA is now a common procedure used in where 
the vector containing the model parameters on the data 
in X and Y. The “hat” over the symbol is placed there to 
emphasize that what we computed is an estimate. In prac-
tice, for large systems of equations, the matrix inverse 
would not be computed but rather an alternative algo-
rithm such as Gaussian Elimination or QR decomposition 
would be employed to make the process more efficient 
and numerically stable. early stages of machine learning 
projects to accomplish “dimensionality reduction.” It has 
been found that PCA sometimes exhibits different recon-
struction error rates when applied to different sub-pop-
ulations. Samadi et al (2018)34 propose a procedure for 
conducting PCA that equalizes error rates of PCA across 

  β̂ = (XT X)-1 XT Y

If there are more than two independent variables, then 
we can conceptualize the model as a hyperplane in four 
or more dimensions, but this is beyond the capacity of 
most people to visualize, so we rely on the mechanisms 
of matrix algebra to manage the complexity of the opera-
tions. The equation   is in a very compact matrix form and, 
to avoid confusion with scalar equations, it is useful to un-
pack the notation. The data in this model is arranged into 
structures (Figure A3).

where β̂ is the vector containing the model parame-
ters on the data in X and Y. The “hat” over the symbol is 
placed there to emphasize that what we computed is an 
estimate. In practice, for large systems of equations, the 
matrix inverse would not be computed but rather an al-
ternative algorithm such as Gaussian Elimination or QR 
decomposition would be employed to make the process 
more efficient and numerically stable.
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34. Samadi, Samira, Uthaipon Tao Tantipongpipat, Jamie H. Morgenstern, Mohit Singh and Santosh S. Vempala. “The Price of Fair PCA: One Extra Dimen-
sion.” In proceedings of 32nd International Conference on Neural Information Processing Systems 32, Montreal, 2018. https://arxiv.org/pdf/1811.00103.pdf
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the relevant populations. In addition, the results of PCA 
are a function of not only the data but also of some imple-
mentation decisions made by the analyst. A PCA using 
the covariance matrix directly can depend on the units in 
which the analyst expresses the variables.  Normalization 
of data is often used to address this situation and there 
are a number of judgements to make such as whether to 
normalize by the standard deviation or the range. For this 
reason, analysts using PCA (and also consumers of the 
analysis) should be on guard for ways that implementa-
tion decisions affect the outcomes.  

Overview of technique: Principal Component Analysis 
(PCA) is a statistical technique for data analysis and dimen-
sionality reduction. PCA identifies linear combinations of 
independent variables that explain the maximum amount 
of variability in the data with as few linear combinations as 
possible.35, 36  PCA employs orthogonal transformations 
to convert a set of data into a set of values of linearly un-
correlated variables called principal components. While 
PCA is not itself a machine learning algorithm, it is an es-
sential ingredient in many machine learning procedures.

If our data set is collected into a matrix X, then we may de-
fine its sample covariance matrix as K. The first principal 
component will be the eigenvector of K corresponding to 
the largest eigenvalue. Similarly, the second principal com-
ponent will be the eigenvector of K corresponding to the 
second largest eigenvalue. In practice, it is often the case 
that data can be described using a model that includes a 

35. Karl Pearson. “On Lines and Planes of Closest Fit to Systems of Points in Space”. Philosophical Magazine 2, no 11 (1901): 559–572, 498–520.in Space”. 
Philosophical Magazine. 2 (11): 559–572., and 498–520.
36. Harold Hotelling. “Analysis of a complex of statistical variables into principal components.” Journal of Educational Psychology 24 (1933): 417–441. 
37. Geoffrey Mclachlan. Discriminant Analysis and Statistical Pattern Recognition. (Boston: Wiley, 1992).

subset of the principal components and that such models 
still explain the majority of the variance in the data set.

Linear Discriminant Analysis (LDA)
Fairness and bias considerations: Linear Discriminant 
Analysis (LDA) classifies objects into different groups 
based on multiple measurements.  The performance of 
LDA is affected strongly by the degree to which the re-
quired assumptions hold. LDA assumes similar patterns 
of variation and correlation among the variables for both 
classes of objects being classified. In classification be-

tween just two alternatives, if this assumption were vio-
lated, then, subsequent to training of the classifier, the 
group exhibiting higher variability would experience 
higher rates of misclassification. This is a subtle but po-
tentially significant mechanism by which bias and unfair-
ness can find its way into an LDA classifier.

Overview of technique: Linear Discriminant Analysis 
(LDA) is a statistical technique for data analysis and para-
metric categorization. LDA is closely related to regres-
sion analysis as it forms a model of a dependent variable 
as a linear combination of independent variables in a data 
set.37 However, discriminant analysis has continuous in-
dependent variables and a categorical dependent vari-
able (that is, the class label). LDA can be understood most 
easily for the case of discrimination into just two classes. 
LDA defines a hyperplane in the space of the vectors of 
independent variables x. Any vectors lying on one side of 

Figure A4
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the plane are categorized as being in one class and any 
vectors lying on the other side of the hyperplane are cat-
egorized as being in the other class. The hyperplane can 
be understood as a plane which contains a point at the 
midpoint of the line between the mean of the two classes 
and is perpendicular to the inverse of the covariance ma-
trix times the vector difference of the mean of the two 
classes. In the case of multiple classes, the boundaries 
are the convex subsets of the hyperplanes that connect 
at the intersections among them. The LDA approach can 
be considered as a Bayesian optimal classification when 
the independent variables are normally distributed and 
the classes all have the same covariance matrix.

Quadratic Discriminant Analysis
Fairness and bias considerations: Quadratic Discriminant 
Analysis (QDA), like LDA, classifies objects into differ-
ent groups based on multiple measurements. The tech-
nique allows for more flexibility as compared to LDA so 
that some statistical assumptions can be relaxed. On the 
other hand, providing more flexibility to the data analyst 
can enable overfitting. When a model has a larger num-
ber of parameters, a wider range of conclusions can be 
supported. It may be possible for data analysts to search 
for models that fit their preconceptions. This confirma-
tion bias could lead to unfairness when a QDA classifier 
is employed.

Overview of technique: Quadratic Discriminant Analysis 
(QDA) is a statistical technique for data analysis and para-
metric categorization. QDA is closely related to LDA in 
that they both assume normal distribution of the inde-
pendent variables used for classification. However, unlike 
LDA, QDA does not require the assumption that the co-
variance of each of the classes is identical. In this case, 
the optimal rule for deciding membership between two 
classes involves a likelihood ratio test. In the two-class 
case, the results of this test can be interpreted geometri-
cally as a quadratic surface in the space of independent 
variables.

k Nearest Neighbors (k-NN):
Fairness and bias considerations: A drawback of “majority 
voting” classification schemes like k-NN can be observed 
when the class distribution is not uniform. The class that 
is more frequently represented in the training set tends 
to dominate the prediction of the new examples. This 
tendency to classify new entities more often in the bet-
ter-represented class is a potential way that unfair out-
comes can arise from the analysis.

Overview of technique: The k Nearest Neighbors algo-
rithm is among the simplest non-parametric categoriza-
tion methods. The k-NN algorithm requires a set of train-
ing data that are labeled entities with multidimensional 
features. In the classification phase, the training data are 

Figure A5
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used by computing the distances to all the elements of 
the training set. When k-NN is used for classification, 
the k nearest neighbors then “vote” on membership of 
the entity.  Alternately, the k-NN algorithm can be used 
to assign a continuous value (rather than a class label), 
in which case a regression procedure is applied to the 
nearest neighbors’ values. The class chosen to assign is 
whichever class has the largest number of the k nearest 
neighbors. A common choice of the distance metric is the 
Euclidean distance; however, given that choice, the clas-
sification scheme can be very sensitive to the scaling of 
the axes or the units in which the features are measured. 
Alternative choices of the distance are sometimes formu-
lated to account for the covariance structure in the fea-
ture variables. The parameter k must be chosen by the 
analyst/programmer. 

Receiver Operating Characteristic (ROC) 
curves
Fairness and bias considerations: A Receiver Operating 
Characteristic (ROC) curve is a widely used tool for as-
sessing the performance of ML techniques. The ROC 
curve makes it clear how tradeoffs between different 
types of mistakes are necessary in any realistic applica-

tion. For example, in judging a person’s credit, we can 
make the mistake of giving a loan to a person who is at 
high risk of not paying it back and we can sometimes 
make the mistake of refusing a loan to a person who 
would have paid it back. By enabling a visualization of 
such trade-offs, ROC curves have become a valued tool.  
However, the usual ways that ROC curves are used will 
tend to place emphasis on accuracy of an ML technique 
rather than on equitable treatment of protected groups.   

Overview of technique: Having just reviewed several 
classification algorithms it is useful to describe a com-
mon tool for evaluating their performance – a Receiver 
Operating Characteristic (aka ROC) curve. The terminol-
ogy of ROC curves is related to its historical origins in ra-
dar systems. The receiver (the “R” in ROC) collects elec-
tromagnetic radiation reflected from targets. When the 
receiver detects an actual target, that is referred to as a 
true positive. When the receiver fails to detect an actual 
target, that is referred to as a false negative. When the 
receiver signals detection of a target when there is actu-
ally no target present, that is referred to as a false posi-
tive. On an ROC curve, the abscissa plots the false posi-
tive rate, which can usually be adjusted using a parameter 
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Figure A7

of the receiver such as a detection threshold. The ordi-
nate of an ROC curve plots the true positive rate.

The corner values of an ROC curve characterize some 
extreme settings that are never actually used. The upper 
right corner is at 1,1 because the detection threshold of 
any receiver could be set so that it alarms constantly. It 
would never fail to detect a target, but it would also fail to 
discriminate at all. The lower left corner is at 0,0 because 
the detection threshold of any receiver could be set so 
that it never alarms. It would never detect a target, but it 
would also never create false positives.

In some cases, it is useful to have a single number that 
summarizes the discrimination ability of a receiver across 
the whole range of detection thresholds. For that pur-
pose, many people compute the Area Under the Curve 
(AUC). A receiver with no discrimination capability at all 
would have an ROC that is a straight line from corner to 
corner and it would have an AUC of 0.5. An ideal receiver 
could have the true positive rate rise very quickly with the 
detection threshold and it could approach an AUC of 1.0.

k Means Clustering
Fairness and bias considerations: A significant chal-
lenge in k means clustering is that the results may de-

pend strongly on how the clusters are initialized. This cre-
ates an opportunity for the results to be affected by the 
prejudices of the analyst. When the clusters reinforce the 
previously held views of the people reviewing the data, 
the results tend to be accepted. When the clusters con-
tradict the previously held views of the people review-
ing the data, the analysis can simply be repeated with a 
different initial set, with a different value of the hyperpa-
rameter k, or both. Through such an iterative process, a 
confirmation bias can emerge. 

Overview of technique: The k means clustering algo-
rithm is a cousin of the k-NN classification algorithm. Its 
purpose is to partition a set of data (numbering more than 
k) into a modest number (k) of classes. Unlike k-NN, no la-
beled training set is needed. The parameter k must be 
chosen by the analyst/programmer. The method requires 
some form of initialization of the clusters — for example, 
choosing k members of the set at random. After initializa-
tion, refinement of the clusters proceeds by computing 
the mean values of all the clusters in space of the feature 
vectors, adding one new observation by assigning it to 
the cluster with the smallest distance to the mean of that 
cluster, and repeating. This results in a partitioning of the 
feature space into k convex regions with linear boundar-
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Figure A8

Hierarchical Clustering
Fairness and bias considerations: A major advantage of 
hierarchical clustering is that the results tend to be inter-
pretable by humans, which is a useful hedge against bias 
and unfairness.

Overview of technique: A set of methods in Machine 
Learning in which new clusters are formed from exist-
ing clusters to form a hierarchy. The evolution of clus-
ters can be accomplished either by agglomeration or by 
subdivision of existing clusters. The resulting groups of 
clusters can be shaped in complex patterns. The rela-
tionships among clusters in the hierarchy are frequently 
represented by a dendrograph (see below). A major dis-
advantage is that the standard algorithm for hierarchical 
agglomerative clustering has a time complexity of O(n3) 
and requires O(n2) memory. 

Density Based Clustering (DBSCAN)
Fairness and bias considerations: Practitioners some-
times train classifiers like DBSCAN in the presence of 
fairness objectives or constraints (e.g., demographic 
parity). However, there are concerns that ML systems 
trained with a fairness constraint may not generalize 
well. After the training is complete and the classifier is 
used on a new set of data, sometimes the fairness guar-

antees are no longer provided. It is an ongoing area of 
research to improve the generalization performance of 
classifiers in the presence of fairness constraints.38

Overview of technique: A non-parametric clustering 
method, DBSCAN is one of the most widely used algo-
rithms in Machine Learning. Clusters are defined as ar-
eas of higher density in comparison with the rest of the 
dataset. Objects that do not belong to the high-density 
clusters are identified as outliers. A major advantage of 
DBSCAN are its time and memory complexity. Under 
reasonable conditions, an overall average runtime com-
plexity of O(n log n) is observed and memory require-
ments of O(n)  can be attained.

Support Vector Machines
Fairness and bias considerations: Support vector ma-
chines have been a central tool in research to promote 
fair classification. Zafar et al. have proposed a novel 
measure of decision boundary fairness which they call 
“decision boundary covariance.”  The authors launching 
this new approach employed SVMs in their earliest im-
plementations because of the advantage SVMs afford 
due to their simple boundary structure.39

Overview of technique: Support vector machines (SVMs) 
are algorithms frequently used for classification. They 
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bear some similarity to k-means clustering in that they 
use hyperplanes to define class membership. Unlike 
k-means clustering, SVMs require labeled training data. 
Another difference with k-means clustering is that the 
hyperplane is not equidistant from the means of the 
clusters but instead is located to provide the largest pos-
sible gap between pairs of clusters (they seek a maxi-
mum-margin hyperplane). Solving for this optimal hyper-
plane can be done by gradient descent methods and, 
for large data sets, usually involves a technique called 
the “kernel trick.” Many implementations of the “ker-
nel trick” are closely related to Principal Components 
Analysis (PCA). An advantage of SVM’s is that they pro-
vide good accuracy even with a small set of training 

data. A disadvantage of SVMs is that their performance 
is often sensitive to outliers in the training set.  Many re-
searchers have proposed more robust variants of SVM 
procedures so that the classification based on contam-
inated data can still provide information similar to that 
based on uncontaminated data. 

Classification and Regression Tree (CART) 
Fairness and bias considerations: Classification and 
Regression Trees offer some compelling advantages 
that enable robust and transparent decisions. When the 
number of cues and branches are kept low, decisions are 
easier to understand and yet the accuracy of the result-
ing decisions can still be quite high.  

Overview of technique: A classification and regression 
tree (CART) analysis is a form of supervised learning. 
Regression analysis is applied to training data and the re-
sults are used to form a decision tree. Observations about 
an item are used along with the decision tree in order to 
draw conclusions about the item’s class or else the prob-
ability of membership in a class. One of the most famous 
examples of CART was its application to classifying heart 
attack patients into two groups.40 The low-risk group was 
defined as those who will survive 30 days. The high-risk 
group was defined as those who will not survive 30 days. 
After examining 19 variables, including age and blood 
pressure, the classification tree (Figure A11) was produced.

Figure A10
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One advantage of CART is that it is readily applicable 
to large data sets. Another advantage is that it mirrors 
some human procedures for classification and there-
fore the results are more easily interpreted. A disadvan-
tage (shared by most tree-based methods) is the level of 
vigilance required during the training process. A small 
change in the training data can result in a large change 
in the predictions of CART. Therefore, careful valida-
tion of CART decision trees is essential. Once that vigi-
lance is in place, CART and related decision tree meth-
ods are among the most effective procedures available 
to practitioners.41,42

Naïve Bayes Classifier
Fairness and bias considerations: Naïve Bayes clas-
sifiers can bring about unfair classification outcomes. 
Kamishima et al. showed that NB classifiers would as-
sign female data entries to the class “low income” even 
when the sensitive attribute of gender was removed.43 
Most of the remedies to such prejudicial outcomes re-

If we assume that the features are independent, which 
is an assumption that would not apply in many applica-
tions, then the chain rule for probabilistically indepen-
dent events can be used to implement the conditioning.

quire some form of probabilistic discriminative model-
ing, which is a feature NB classifiers lack.

Overview of technique: A classifier based on a condi-
tional probability model with an assumption of indepen-
dence among the features. The models are not neces-
sarily Bayesian in the strict sense, but the updated rule is 
based on Bayes’ Law, so the name has persisted. Given 
a class Ck and a set of features x1, x2, through xn, Bayes 
Law states:

41.  Laura Martignon, Konstantinos V. Katsikopoulos, and Jan K. Woike. “Categorization with Limited Resources: A Family of Simple Heuristics.” Journal 
of Mathematical Psychology 52, no 6 (2008): 352-361. 
42. Nathaniel Phillips, Hansjörg Neth, Jan Woike, and Wolfgang Gaissmaier. “FFTrees : A toolbox to create, visualize, and evaluate fast-and-fru∃gal deci-
sion trees.” Judgment and Decision Making, 12, no. 4 (2017): 344–368.
43. Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. “Fairness-aware Learning through Regularization Approach.” In 2011 11th IEEE International 
Conference on Data Mining Workshops (New York: IEEE, 2009): 643-650. http://dx.doi.org/10.1109/ICDMW.2011.83     

Figure A11
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In this case, the naïve Bayes classifier will be computa-
tionally efficient even if there are a large number of fea-
tures. The computations for the updating step grow only 
linearly with the number of features. In practice, naïve 
Bayes has demonstrated good performance even if the 
training sets are small. The accuracy of classification is 
good enough in many contexts even when the indepen-
dence assumption is not very well satisfied, however 
the accuracy is usually not as good as that of random 
forests.44

Random Forest
Fairness and bias considerations: Random forests can 
provide some of the best performance in decision mak-
ing and work well in the presence of uncertainty and 
variability.  However, a critical drawback is that it can be 
hard to explain why a random forest leads to a particu-
lar decision in any particular case.  This can be a serious 
drawback in cases where individual-level explanations 
are needed for transparency or accountability.

Overview of technique: An ensemble method for classi-
fication in which the training process involves construct-

ing a multitude of decision trees and each tree casts a 
unit vote for the most popular class.45 The predominant 
training algorithm for random forests is bootstrap aggre-
gating, or bagging. During training the training data are 
sampled at random with replacement (thus, “bootstrap” 
is the “b” in bagging). Additional trees are constructed 
to fit the bootstrap sample and added to the forest. The 
differences in trees can also be brought about through 
various other techniques such as the ‘Random Subspace 
method’46 (aka “feature bagging”). Here, a subset of the 
input variables (features) is selected for decision-mak-
ing at each node. Additionally, all these methods have 
to deal with aggregation of the outputs of multiple trees 
which is central to the procedures’ effectiveness. Some 
of the most common approaches to aggregation are 
voting (commonly applied for classification) or averag-
ing (commonly applied in random forest regression). A 
significant advantage of random forests is that they ben-
efit from the properties of ensemble methods that over-
all outputs are superior to the best individual predictors 
in the ensemble as long as some mild conditions are met 
regarding diversity and accuracy of the ensemble.

Figure A12
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Artificial Neural Network (ANN)
Fairness and bias considerations: A common critique of 
ANNs is that the requirements for training can be too 
demanding for many real-world applications. ANNs can 
converge to many different solutions because many lo-
cal minima exist and the training procedures may get 
stuck in local minima. Importantly, the outputs of ANNs 
can be very difficult or sometimes impossible to inter-
pret. Therefore, great vigilance must be exercised in ap-
plying ANNs to interventions in the developing world so 
that instances of unfair outcomes can be detected and 
mitigated in a timely fashion.

Overview of technique: This is a family of computa-
tional models comprising interconnected systems of 
simple units or nodes that are often called artificial neu-
rons because they are loosely based on the operation 
of neurons in animals. The signal into the artificial neu-
rons are continuous real values. The output of each arti-
ficial neuron is a (usually) non-linear function of the sum 
of its inputs. The connections between artificial neurons 
are often called edges and these are assigned weights 
whose values change during the training / learning pro-
cess. ANNs can be used for supervised or unsupervised 
learning. ANNs have demonstrated significant flexibil-
ity in applications with unstructured data and complex, 
non-linear relationships. 
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