
Design of Integrated IoT Hardware for Electric Cargo Bike
in Tanzania

Juan Angel Luera
MIT EC.793, Fall 2024

Greenfoot Team

Layal Barakat
MIT EC.793, Fall 2024

Greenfoot Team

Olivia McGrath
MIT EC.793, Fall 2024

Greenfoot Team

Abstract—This paper documents the work completed by the
MIT D-Lab EC.793 student team for Greenfoot Africa’s ZELO
eTrike. It focuses on the first pass at IoT hardware for
production, using an STM32 microcontroller. A brief
background of the requirements of the system is given before
expanding upon the first prototype of the PCB, including each
of the individual components and the STM32 pin setup. This
prototype is in the early stages and will require debugging of
the board and code, once all hardware has been delivered, to
ensure that functional requirements have been met. During the
beginning of next year, the design will be integrated with and
tested on multiple bikes.

Keywords—printed circuit boards, electric bike, fleet
management, IOT system, electronics prototyping

I. INTRODUCTION

Greenfoot Africa was founded in 2019, with the goal of
transforming the transport of goods in Africa’s urban areas
through the increased adoption of clean technology. In 2021,
they launched a platform where companies in Arusha,
Tanzania and surrounding areas can request delivery or
pickup of goods. Over the following 18 months, their team
gathered valuable information which led them to develop the
ZELO eTrike, a purpose-built electric cargo bike and fleet
management system, which is the baseline design for which
this work is focused.

The ZELO eTrike, which can carry up to 300 kilos fills a
need in the community, where current solutions to transport
these loads are to either overload motorbikes and take
multiple trips, use a petrol or diesel truck which can carry up
to a ton - which is significantly larger than what is needed -,
or to leverage public transportation or personal vehicles - the
latter of which is restricted to wealthier individuals. It is
designed to be manufactured locally, with easy assembly,
and it can handle rough roads and diverse climates,
travelling over 80 km on a single charge[2].

ZELO eTrike drivers are matched with jobs using an
intelligent fleet management and matching system. The
eTrike benefits drivers as fuel costs alone of operating a
motorcycle or van can be up to 50% of total earnings[2].
Now, drivers are compensated based on distance travelled
and payload and do not have to pay for fuel. For the
driver-job matching system to function and to determine the
appropriate driver compensation, integrated IoT hardware is
needed for real-time monitoring and tracking of the bikes.

II. IOT HARDWARE DEVELOPMENT

A previous D-Lab team, working with Greenfoot Africa,
designed IoT hardware, leveraging an ESP32
microcontroller. For the updated prototype, an STM32 will
replace the ESP32, because of the improved robustness and
ease of sourcing parts. The benefit of the ESP32 is the
built-in wifi module, but this function is not needed. As the
Greenfoot team is looking to expand production, a scalable
solution is needed.

A. Goals of IoT Hardware
The purpose of the integrated IoT hardware is to

communicate with the fleet management system so that it
can assign drivers to jobs. To do this, the requirements of the
IoT system are the following:

● Communicate battery and bike health to the fleet
management system. This includes current, charge,
and temperature.

● Provide real-time location data of each bike.
● Remotely switch the bike on or off for security.
● Record weight of the cargo.
● Log information on the bumpiness of each ride.
The goal is to have a board that can be prepared for the

upcoming production scale up.

B. Component Selection
When selecting the parts for the IOT hardware, the

current prototype design, which uses an ESP32
microcontroller, the accessibility of products in Tanzania,
the project timeline, and the component specifications were
considered. The updated prototype includes the following
components on a custom PCB.

● NUCLEO L432KC[4] (STM32L432KC) → STM
prototyping board

● SIM868 GSM/GPRS/GNSS Hat Module (for
Raspberry Pi)[3] → GPS/communications

● MCP-2551[6] → CAN transceiver
● MPU-6050[7] → gyroscope
● SSA-500[5] → current sensor
● TMP36[8] → temperature sensor
The gyroscope (MPU-6050), temperature sensor

(TMP36), and CAN transceiver (MCP-2551) are
components that the Greenfoot Africa team is currently
using for their prototype. The SIM868 was chosen because
of its 2G compatibility and easy sourcing for the Greenfoot
Africa team. The STM32L432KC is also easily sourced. The
use of the NUCLEO prototyping board allows for flexibility



during the code generation, debugging, and testing stage of
the STM. It will be powered by a 3.3V LDO battery and
provide 5V and 3.3V to the PCB. The goal would be to
eventually remove the NUCLEO and only add the STM32.

Although we do not need 500A of differential current
sensing for the battery at any point (we only expect around
100A at max current draw), the shunt current sensor
(SSA-500) is what could be found quickly at D-Lab. The
current sensor would primarily be used for the battery and
sensing any excess current draw. To be able to monitor
battery life and remotely trigger battery shutoffs in case of
emergency or theft, the CAN transceiver (MCP-2551) is able
to communicate with the battery to do so. The temperature
sensor (TMP36) would also be placed near the battery to
detect any overheating. All communications would run
through the SIM868 Hat Module through 2G networks, such
as tracking the bike location and routes or communicating
bike battery and health. Roads in and around Arusha are
often bumpy, so the gyroscope (MPU-6050) is used to
monitor the motion of the cargo box. This, coupled with
location data can be used to determine which routes cause
more jostling of the cargo and should be avoided when
transporting fragile goods.

C. PCB Design
The schematic for our PCB was created in KiCad 8.0.

Each component schematic was laid out and connected as
per each part’s datasheet. Using the NUCLEO board solely
allowed us to focus on the connections between the STM
and the different sensing components. The components that
required I2C pins were connected to I2C pins on the
NUCLEO, and components that required UART pins were
connected to the RX/TX pins on the NUCLEO.

The SIM868 GSM/GPRS/GNSS Hat Module did not
have an explicit footprint, but as it was compatible with the
Raspberry Pi extension pinout, that was the footprint used.
The current sensor would be connected to the board via a
4-wire connector, so a 4-pin header was used. Every other
component had an explicit footprint.

Arranging the PCB was a matter of putting the NUCLEO
in the center of the board and placing connected components
as close to their NUCLEO pins as possible. Bypass
capacitors were placed as close to their respective pins as
possible too. 5V and 3.3V power were routed across the
board through copper pours, while signal was routed through
0.5mm traces. There was some difficulty in keeping traces
short as every component connected to the NUCLEO and
there was only so much room on its left and right sides.
Future iterations of the board could consider increasing the
number of layers for the ground plane or power planes to
reduce the number of traces visible.

Many of the passive components (resistors, capacitors)
will be directly soldered to the board, as will the MCP-6050
sensor. Notably, the current and temperature sensors will not
be. The current sensor itself will be located near the ebike
battery, with a 4-pin header soldered to the board to connect
to the 4-wire connector. Three lengths of wire will be
soldered to the temperature sensor and PCB so it can also be
placed near the battery. The NUCLEO and SIM686 board
are attached to the PCB via soldered female header pins.
This allows for easy removal from the PCB for coding and
debugging purposes.

The current limiting factor in terms of cost is the SIM868
board. The SIM868 chip alone is 10x cheaper than the
board. The NUCLEO is also double the cost of the STM
alone. Future iterations of the board will focus on
decoupling sensors from their development boards to reduce
costs.

Figure 1. PCB version 1 schematic.

D. Programming the Board
To program the microcontroller, STM32Cube is used.

STMCube software is free to download and use, and has the
added option of allowing us to assign pins as needed. After
loading the STM32L432KC pin layout into the IDE, we
used the following diagram of the board to determine which
pins have the necessary functions and how to arrange them
so that the pins are physically located close to the sensor
placement on the PCB.

Figure 2. NUCLEO pin layout and available functions.[4]

The current design required that the CAN transceiver use
pins PA_11 and PA_12 for CAN RX and TX capability. The
differential current sensor required two analog pins, while
the temperature sensor required one. The SIM868 TX and
RX required UART TX and RX pins and an analog pin. The
gyroscope required two I2C SDA and SCL pins. The final
STM pin configuration is shown in the following image.



Figure 3. NUCLEO pin setup in STMCube.
There are still pins that remain unassigned on the STM,

which include several GPIO pins. These could be used to
communicate with an amplifier with input from multiple
load cells, if an integrated sensor solution is desired to
measure cargo weight.

For the temperature sensor, which arrived early enough
to test, the code has required a substantial amount of
debugging, so a large effort to get the remaining sensors
working is anticipated.

IV. SOFTWARE INFRASTRUCTURE
A big challenge that we faced during this project was

creating the infrastructure for communication. While the
STM32 system is able to transmit data this is useless without
proper infrastructure.

A. MQTT
For communication between the microcontrollers and our

backend we used the MQTT protocol. First tested this in
software by writing code in python for publishing fake gps
data in public MQTT channels. Next, we wrote C code that
communicated an STM to the MQTT channels through
ethernet. (See appendix for more details)

B. Zelo Website

Something else we built was the backend of the
website. Since the goal is to eventually be able to use the
Zelo bikes akin to an uber you need a centralized data
system. We wanted the website to be as simple as possible
and quick for deployment, therefore we decided to use
Flask, HTMX, SQLAlchemy with Sqlite. These
technologies enabled us to create a lightweight app that can
easily be deployed. Furthermore, by minimizing the number
of languages we reduce the complexity of the site itself.
Lastly, using a well known language such as python makes it
even more accessible. Our goal with this website is that it
can be easily passed down to following teams and even be
managed by the people in charge of the start-up.

V. CONCLUSIONS

With only one semester to work on this project until now,
we have been very time limited. As a result, there is still
some work that we plan on accomplishing before travelling
to Tanzania and once we are at Greenfoot Africa.

A. Future Work
We have placed the order for our prototype PCB, which

will be arriving a couple days after the last class. Once the
board and the remainder of our components have arrived, we
would like to assemble and test the PCB. Once assembled,
we will begin to work on getting readouts from each of the
sensors.

The Greenfoot team has stated that they are working to
finish two bikes, in addition to their one testing platform, so
there should be three ZELO bikes available to work on by
the time our team arrives. When packing for the trip we
would like to plan to bring at least three sets of hardware so
that multiple units can be tested at once. Along with the
testing hardware, we will determine where to mount the
hardware once the bike and the necessary housing to keep
components shielded from the environment.

The current PCB design uses a CAN transceiver to
interact with the battery. Only recently was the Greenfoot
team able to acquire a datasheet for the BMS, so in future
PCB iterations, it might be possible to eliminate the
transceiver, as well as the temperature sensor. The BMS
datasheet shows that it should be able to return a temperature



measurement. This would help to further simplify the PCB
design.

Finally, additional options for load sensing will continue
to be explored when the team receives a clearer picture of
how the cargo box is attached to the bike. Load cells with
the capability to measure up to 300 kilos, and any load cell
with a maximum load of 100 kilos or greater which can be
used in parallel, are costly and could require additional parts
to be added to the cargo box. Over the next couple weeks we
will explore the potential to create our own load cells,
customized for the setup, or the use of thin film strain gages
on existing parts of the cargo box.

B. Key Takeaways
There are several takeaways from this project as it stands

now. Firsty, it is very helpful to create a development board,
especially in the process of testing out different blocks of
code and debugging sensors. In addition, there are several
ways of laying out a PCB that might work, and the key is to
try to move things around until trace lengths are minimized.
Finally, time is certainly limited for projects such as these
and when it comes to prototyping, things always take longer
than anticipated. Lead times for parts are often long, and
even getting some bits of information took several weeks to
months. Flexibility and adaptability are key.

ACKNOWLEDGMENT

We would like to thank Heewon Lee and Adi Mehrota, as
well as Johnson Jacka from the Greenfoot Africa team, for
their support this semester.

REFERENCES

[1] Greenfoot & Access to Energy Institute. “E-Mobility in
Tanzania: Business and Technical Insights on Productive
Use Cases. Business Models Part 1: Flat Fee Rental for
Motorcycle Taxis”. 2021.
https://a2ei.org/resources/uploads/2021/10/A2EI_Greenf
ooot_E-Mobility-Adoption-in-Tanzania_Business-and-te
chnical-insights-on-productive-use-cases.pdf

[2] Greenfoot. “About Greenfoot Africa: Driving Africa’s
Transition to Sustainable Urban Logistics”. 2024.

[3] SIM868 GSM/GPRS/GNSS Hat Module Wiki:
https://www.waveshare.com/wiki/GSM/GPRS/GNSS_H
AT

[4] STM32L432KC Pins (NUCLEO-L432KC):
https://os.mbed.com/platforms/ST-Nucleo-L432KC/

[5] Rideon SSA-500 Current Sensor Datasheet:
https://riedon.com/media/pdf/SSA2.pdf

[6] MCP2551 High-Speed CAN Transceiver Datasheet:
https://ww1.microchip.com/downloads/en/DeviceDoc/20
001667G.pdf

[7] MPU-6050 gyroscope datasheet:
https://invensense.tdk.com/wp-content/uploads/2015/02/
MPU-6000-Datasheet1.pdf

[8] TMP36 Temperature sensor datasheet:
https://www.analog.com/media/en/technical-documentati
on/data-sheets/TMP35_36_37.pdf

https://www.waveshare.com/wiki/GSM/GPRS/GNSS_HAT
https://www.waveshare.com/wiki/GSM/GPRS/GNSS_HAT
https://os.mbed.com/platforms/ST-Nucleo-L432KC/
https://riedon.com/media/pdf/SSA2.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/20001667G.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/20001667G.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/TMP35_36_37.pdf


APPENDIX A



APPENDIX B (ZELO WEBSITE)

Links to github

https://github.com/El-Guapo2024/ZeloWebsite

